Git报错: Failed to connect to github.com port 443 解决方案 命令中的主机号(127.0.0.1)是使用的代理的主机号(自己电脑有vpn那么本机可看做访问github的代理主机),即填入127.0.0.1即可,否则填入代理主机 ip(就是网上找的那个ip)命令中的端口号(7890)为代理软件(代理软件不显示端口的话,就去Windows中的代理服务器设置中查看)或代理主机的监听IP,可以从代理服务器配置中获得,否则填入网上找的那个端口port。socks5和http两种协议由使用的代理软件决定,不同软件对这两种协议的支持有差异,如果不确定可以都尝试一下。
昇思25天学习打卡营第1天 | 入门教程 昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。ModelZoo(模型库):ModelZoo提供可用的深度学习算法网络,也欢迎更多开发者贡献新的网络(ModelZoo地址)。
面向切面编程AOP AOP(Aspect rient Programming),面向切面编程,AOP可以拦截指定的方法并且对方法增强,而且无需侵入到业务代码中,使业务与非业务处理逻辑分离,实现开闭原则。:类里面可以被增强的方法:实际被增强的方法,假如⼀个类中有四个方法,但是只增强两个,那么这两个就是切入点。:实际增强的逻辑部分,也就是若干个方法的共性功能,在切入点处执行,最终体现为一个方法。有如下五种类型:@Before:前置通知,在方法执行之前执行@Aroud:环绕通知,围绕着方法执行。
【论文阅读】RoSteALS: Robust Steganography using Autoencoder Latent Space-2023-CVPR RoSteALS使用一个轻量级的秘密编码器将秘密信息映射到图像的潜空间中,并通过对潜空间进行微小的偏移来嵌入秘密信息。该方法使用预训练的自编码器作为基础模型,不需要学习图像分布,因此训练过程简单且效果良好。
【论文阅读】【论文复现】Image Disentanglement Autoencoder for Steganography without Embedding(IDEAS)-CVPR-2022 无嵌入隐写(steganography without embedding, SWE)隐藏秘密信息的过程不会直接修改载体图像,因此具有免疫传统隐写分析器攻击的独特优势。现有基于生成的SWE的三个问题:(1)生成的载密图像不够真实,影响对不可察觉性(imperceptibility)的要求;(2)生成器的生成多样性受限,可能引发潜在的安全问题;(3)秘密信息的提取准确率较低。
【论文阅读】CRoSS: Diffusion Model Makes Controllable, Robust and Secure Image Steganography 扩散模型的两个特性,即无需训练就能在两幅图像之间实现转换的能力,以及对噪声数据的鲁棒性,可以用来提高图像隐写任务的安全性和自然鲁棒性。基于条件扩散模型Stable diffusion利用了开源社区的最新工具,如LoRAs和ControlNets提高容器图像的可控性和多样性。
【论文复现】FNNS:Fixed Neural Network Steganography: Train the images, not the network-图像隐写 【代码】【论文复现】FNNS:Fixed Neural Network Steganography: Train the images, not the network-图像隐写。