莫比乌斯反演(三):莫比乌斯反演定理

莫比乌斯反演定理

定理

第一种形式的莫比乌斯反演

存在 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是定义在非负整数域的函数,并且满足
f ( n ) = ∑ d ∣ n g ( d ) f(n) = \sum_{d|n}g(d) f(n)=dng(d)
式子等价于
g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) g(n) = \sum_{d|n}\mu(d)f(\frac{n}{d}) g(n)=dnμ(d)f(dn)


第二种形式的莫比乌斯反演

莫比乌斯反演还存在另一种形式:


存在
f ( n ) = ∑ n ∣ d g ( d ) f(n)=\sum_{n|d}g(d) f(n)=ndg(d)
式子等价于
g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) g(n)=\sum_{n|d}\mu(\frac{d}{n})f(d) g(n)=ndμ(nd)f(d)

证明

第一种形式的证明
简单朴素证明:

只需证右边 ∑ d ∣ n μ ( d ) f ( n d ) \sum_{d|n}\mu(d)f(\frac{n}{d}) dnμ(d)f(dn) 等于左边的 g ( n ) g(n) g(n) 即可。
∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( d ) ∑ i ∣ n d g ( i ) = ∑ d ∣ n ∑ i ∣ n d μ ( d ) g ( i ) = ∑ i ∣ n ∑ d ∣ n i μ ( d ) g ( i ) = ∑ d ∣ n μ ( d ) ∑ i ∣ n d g ( i ) = g ( n ) \begin{aligned} \sum_{d|n}\mu(d)f(\frac{n}{d}) & = \sum_{d|n}\mu(d)\sum_{i|\frac{n}{d}}g(i)\\ &=\sum_{d|n}\sum_{i|\frac{n}{d}}\mu(d)g(i)\\ &=\sum_{i|n}\sum_{d|\frac{n}{i}}\mu(d)g(i)\\ &=\sum_{d|n}\mu(d)\sum_{i|\frac{n}{d}}g(i)\\ &=g(n)\\ \end{aligned} dnμ(d)f(dn)=dnμ(d)idng(i)=dnidnμ(d)g(i)=indinμ(d)g(i)=dnμ(d)idng(i)=g(n)
如上, g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) g(n)=\sum_{d|n}\mu(d)f(\frac{n}{d}) g(n)=dnμ(d)f(dn) 得证。

卷积证明:

证明参考:点击此链接
求证: f ( n ) = ∑ d ∣ n g ( d ) ⇔ g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) f(n) = \sum_{d|n}g(d) \Leftrightarrow g(n) = \sum_{d|n}\mu(d)f(\frac{n}{d}) f(n)=dng(d)g(n)=dnμ(d)f(dn)

已知 μ \mu μ 为莫比乌斯函数, u u u 为乘法单位元, e e e 为单位元。
它们存在以下三个性质:1. u = μ − 1 u = \mu^{-1} u=μ1 。2. u ∗ μ = e u*\mu=e uμ=e 。3. e ∗ f = f e*f=f ef=f
求证: f = g ∗ u ⇔ g = f ∗ μ f = g * u \Leftrightarrow g = f*\mu f=gug=fμ
先证: f = g ∗ u ⇒ g = f ∗ μ f=g*u\Rightarrow g = f*\mu f=gug=fμ
f = g ∗ u ⇒ g = f ∗ μ ⇒ g ∗ u = f ∗ μ ∗ u ⇒ g ∗ u = f ∗ ( μ ∗ u ) ⇒ g ∗ u = f ∗ e ⇒ g ∗ u = f \begin{aligned} f=g*u & \Rightarrow g = f * \mu\\ & \Rightarrow g*u = f*\mu*u\\ & \Rightarrow g*u= f*(\mu*u)\\ & \Rightarrow g*u=f*e\\ & \Rightarrow g*u=f\\ \end{aligned} f=gug=fμgu=fμugu=f(μu)gu=fegu=f
如上, f ( n ) = ∑ d ∣ n g ( d ) ⇒ g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) f(n) = \sum_{d|n}g(d) \Rightarrow g(n) = \sum_{d|n}\mu(d)f(\frac{n}{d}) f(n)=dng(d)g(n)=dnμ(d)f(dn) 得证。
再证: g = f ∗ μ ⇒ f = g ∗ u g = f * \mu \Rightarrow f=g*u g=fμf=gu
g = f ∗ μ ⇒ f = g ∗ u ⇒ f ∗ μ = g ∗ u ∗ μ ⇒ f ∗ μ = g ∗ ( u ∗ μ ) ⇒ f ∗ μ = g ∗ e ⇒ f ∗ μ = g \begin{aligned} g = f*\mu & \Rightarrow f=g*u\\ & \Rightarrow f*\mu=g*u*\mu\\ & \Rightarrow f*\mu=g*(u*\mu)\\ & \Rightarrow f*\mu=g*e\\ & \Rightarrow f*\mu=g\\ \end{aligned} g=fμf=gufμ=guμfμ=g(uμ)fμ=gefμ=g
如上, g = f ∗ μ ⇒ f = g ∗ u g = f * \mu \Rightarrow f=g*u g=fμf=gu 得证。
f ( n ) = ∑ d ∣ n g ( d ) ⇔ g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) f(n) = \sum_{d|n}g(d) \Leftrightarrow g(n) = \sum_{d|n}\mu(d)f(\frac{n}{d}) f(n)=dng(d)g(n)=dnμ(d)f(dn) 得证。

第二种形式的证明
简单朴素证明

求证 f ( n ) = ∑ n ∣ d g ( d ) ⇔ g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) f(n)=\sum_{n|d}g(d) \Leftrightarrow g(n)=\sum_{n|d}\mu(\frac{d}{n})f(d) f(n)=ndg(d)g(n)=ndμ(nd)f(d)
k = d n k={d\over n} k=nd
g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) = ∑ k = 1 + ∞ μ ( k ) f ( n k ) = ∑ k = 1 + ∞ μ ( k ) ∑ n k ∣ i g ( i ) = ∑ k = 1 + ∞ ∑ n k ∣ i μ ( k ) g ( i ) = ∑ n ∣ i ∑ k ∣ i n μ ( k ) g ( i ) = ∑ n ∣ i g ( i ) ∑ k ∣ i n μ ( k ) \begin{aligned} g(n)&=\sum_{n|d}\mu(\frac{d}{n})f(d)\\ &=\sum_{k=1}^{+\infty}\mu(k)f(nk)\\ &=\sum_{k=1}^{+\infty}\mu(k)\sum_{nk|i}g(i)\\ &=\sum_{k=1}^{+\infty}\sum_{nk|i}\mu(k)g(i)\\ &=\sum_{n|i}\sum_{k|{i\over n}}\mu(k)g(i)\\ &=\sum_{n|i}g(i)\sum_{k|{i\over n}}\mu(k)\\ \end{aligned} g(n)=ndμ(nd)f(d)=k=1+μ(k)f(nk)=k=1+μ(k)nkig(i)=k=1+nkiμ(k)g(i)=nikniμ(k)g(i)=nig(i)kniμ(k)
观察 ∑ n ∣ i g ( i ) ∑ k ∣ i n μ ( k ) \sum_{n|i}g(i)\sum_{k|{i\over n}}\mu(k) nig(i)kniμ(k) ,当且仅当 i n = 1 {i\over n}=1 ni=1,即 i = n i=n i=n 时, ∑ k ∣ i n μ ( k ) = 1 \sum_{k|{i\over n}}\mu(k)=1 kniμ(k)=1,其余都是 0 0 0。因此
∑ n ∣ i g ( i ) ∑ k ∣ i n μ ( k ) = g ( n ) \sum_{n|i}g(i)\sum_{k|{i\over n}}\mu(k)=g(n) nig(i)kniμ(k)=g(n)
得证。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值