莫队算法(转)

转自https://www.cnblogs.com/CsOH/p/5904430.html

问题:有n个数组成一个序列,有m个形如询问L, R的询问,每次询问需要回答区间内至少出现2次的数有哪些。

  朴素的解法需要读取O(nm)次数。如果数据范围小,可以用数组,时间复杂度为O(nm)。如果使用STL的Map来保存出现的次数,则需要O(nmlogn)的复杂度。有没有更快的方法呢?

  注意到询问并没有强制在线,因此我们可以使用离线方法。注意到一点,如果我们有计算完[L, R]时的“中间变量”(在本题为每个数出现的次数),那么[L - 1, R]、[L + 1, R]、[L, R - 1]、[L, R + 1]都能够在“中间变量”的“基本操作时间复杂度”(1)得出。如果能安排适当的询问顺序,使得每次询问都能用上上次运行产生的中间变量,那么我们将可以在更优的复杂度完成整个询问。

(1) 如果数据较小,用数组,时间复杂度为O(1);如果数据较大,可以考虑用离散化或map,时间复杂度为O(logn)。

  那如何安排询问呢?这里有个时间复杂度非常优秀的方法:首先将每个询问视为一个“点”,两个点P1, P2之间的距离为abs(L1 - L2) + abs(R1 - R2),即曼哈顿距离,然后求这些点的最小生成树,然后沿着树边遍历一次。由于这里的距离是曼哈顿距离,所以这样的生成树被称为“曼哈顿最小生成树”。最小曼哈顿生成树有专用的算法(2),求生成树时间复杂度可以仅为O(mlogm)。

(2) 其实这里是建边的算法,建边后依然使用传统的Prim或者Kruskal算法来求最小生成树。

  不幸的是,曼哈顿最小生成树的写法很复杂,考场上不建议这样做。 

  一种直观的办法是按照左端点排序,再按照右端点排序。但是这样的表现不好。特别是面对精心设计的数据,这样方法表现得很差。

  举个例子,有6个询问如下:(1, 100), (2, 2), (3, 99), (4, 4), (5, 102), (6, 7)。

  这个数据已经按照左端点排序了。用上述方法处理时,左端点会移动6次,右端点会移动移动98+97+95+98+95=483次。右端点大幅度地来回移动,严重影响了时间复杂度——排序的复杂度是O(mlogm),所有左端点移动次数仅为为O(n),但右端点每个询问移动O(n),共有m个询问,故总移动次数为O(nm),移动总数为O(mlogm + nm)。运行时间上界并没有减少。

  其实我们稍微改变一下询问处理的顺序就能做得更好:(2, 2), (4, 4), (6, 7), (5, 102), (3, 99), (1, 100)。

  左端点移动次数为2+2+1+2+2=9次,比原来稍多。右端点移动次数为2+3+95+3+1=104,右端点的移动次数大大降低了。

  上面的过程启发我们:①我们不应该严格按照升序排序,而是根据需要灵活一点的排序方法;②如果适当减少右端点移动次数,即使稍微增多一点左端点移动次数,在总的复杂度上看,也是划算的。

  在排序时,我们并不是按照左右端点严格升序排序询问,而只是令其左右端点处于“大概是升序”的状态。具体的方法是,把所有的区间划分为不同的块,将每个询问按照左端点的所在块序号排序,左端点块一样则按照右端点排序。注意这个与上一个版本的不同之处在于“第一关键字”是左端点所在块而非左端点。

  这就是莫队算法。为什么叫莫队算法呢?据说这是2010年国家集训队的莫涛(3)在作业里提到了这个方法。

(3) 由于莫涛经常打比赛做队长,大家都叫他莫队,该算法也被称为莫队算法。(感谢汝佳大神、莫队的指出)

  莫队算法首先将整个序列分成√n个块(同样,只是概念上分的块,实际上我们并不需要严格存储块),接着将每个询问按照块序号排序(一样则按照右端点排序)。之后,我们从排序后第一个询问开始,逐个计算答案。

int len;    // 块长度

struct Query{
    int L, R, ID, block;
    Query(){}  // 构造函数重载
    Query(int l, int r, int ID):L(l), R(r), ID(ID){
        block = l / len;
    }
    bool operator < (const Query rhs) const {
        if(block == rhs.block) return R < rhs.R;  // 不是if(L == rhs.L) return R < rhs.R; return L < rhs.L
        return block < rhs.block;           // 否则这就变回算法一了
    }
}queries[maxm];

map<int, int> buf;

inline void insert(int n){
    if(buf.count(n))
        ++buf[n];
    else
        buf[n] = 1;
}
inline void erase(int n){
    if(--buf[n] == 0) buf.erase(n);
}

int A[maxn];        // 原序列
queue<int> anss[maxm];  // 存储答案

int main(){
    int n, m;
    cin >> n;
    len = (int)sqrt(n);    // 块长度
    for(int i = 1; i <= n; i++){
        cin >> A[i];
    }
    cin >> m;
    for(int i = 1; i <= m; i++){
        int l, r;
        cin >> l >> r;
        queries[i] = Query(l, r, i);
    }
    sort(queries + 1, queries + m + 1);
    int L = 1, R = 1;
    buf[A[1]] = 1;
    for(int i = 1; i <= m; i++){
        queue<int>& ans = anss[queries[i].ID];
        Query &qi = queries[i];
        while(R < qi.R) insert(A[++R]);
        while(L > qi.L) insert(A[--L]);
        while(R > qi.R) erase(A[R--]);
        while(L < qi.L) erase(A[L++]);

        for(map<int, int>::iterator it = buf.begin(); it != buf.end(); ++it){
            if(it->second >= 2){
                ans.push(it->first);
            }
        }
    }
    for(int i = 1; i <= m; i++){
        queue<int>& ans = anss[i];
        while(!ans.empty()){
            cout << ans.front() << ' ';
            ans.pop();
        }
        cout << endl;
    }
}

尽管分了块,但是我们可以对所有的“询问转移”一视同仁。上述的代码有几个需要注意的地方。

  一是insert和erase,这里在插入前判断了是否存在、插入后判断是否为0,但这不是必须的(insert时会将新节点初始化为0,erase为0后对处理答案不影响);

  二是区间变化的顺序,insert最好放在前面,erase最好在后面(想一想,为什么);

  三是insert总是使用前缀自增自减运算符,erase总是用后缀运算符;

  四是我们在访问我们在“询问转移”前声明了Query的引用,来减少运行时寻址的计算量;

  五是我们重载了Query的构造函数。为什么要重载呢?

  我们希望在Query得到L, R, ID时自动计算块block,这就要写一个构造函数Query(int L, int R, int ID)来实现。但是,当结构体没有构造函数,实例化时不会初始化,有构造函数则一定会调用构造函数进行初始化。“托他的福”,queries数组建立时会对每个元素调用一次构造函数。可是我们只有有3个参数的构造函数,构造时一定要有3个参数。而建立数组时却没有参数,编译器会报错。折中的办法是写一个没有参数的构造函数,可以避免这一问题。

  这样排序有个特点。L和R都是“大概是升序”。不过L大概像爬山,总体上升但是会有局部的小幅度下降。R则有些难以形容,大概可以看出其由很多段快速上升,每段上升到顶端后下降到最底。

  下面是随机生成100个数据,将数据放到WPS表格后制成图表后的样子。

  

  还有一个问题,为什么分块要分成√n块呢?我们分析一下时间复杂度。

  假设我们每k个点分一块。

  如果当前询问与上一询问左端点处在同一块,那么左端点移动为O(k)。虽然右端点移动可能高达O(n),但是整一块询问的右端点移动距离之和也是O(n)(想一想,为什么)。因此平摊意义下,整块移动为O(k) × O(k) + O(n),一共有n / k块,时间复杂度为O(kn + n2 / k)。

  如果询问与上一询问左端点不处于同一块,那么左端点移动为O(k),但右端点移动则高达O(n)。幸运的是,这种情况只有O(n / k)个,时间复杂度为O(n + n2 / k)。

  总的移动次数为O(kn + n2 / k)。因此,当k = √n时,运行时间上界最优,为O( n1.5 )。

  最后,因此根据每次insert和erase的时间复杂度,乘上O(1)或者O(logn)亦或O(n)不等,得到完整算法的时间复杂度(代码使用了map,为O( logn ))。

  十分感谢汝佳大神对此文的指导orz。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值