《算法设计与分析》--电路布线随笔

转自:https://blog.csdn.net/liufeng_king/article/details/8671407

 1、问题描述:

      在一块电路板的上、下两端分别有n个接线柱。根据电路设计,要求用导线(i,π(i)) 将上端接线柱i与下端接线柱π(i)相连,如下图。其中,π(i),1≤ i ≤n,是{1,2,…,n}的一个排列。导线(I, π(i))称为该电路板上的第i条连线。对于任何1 ≤ i ≤ j ≤n,第i条连线和第j条连线相交的充要条件是π(i)> π(j).

π(i)={8,7,4,2,5,1,9,3,10,6}

         在制作电路板时,要求将这n条连线分布到若干绝缘层上。在同一层上的连线不相交。电路布线问题要确定将哪些连线安排在第一层上,使得该层上有尽可能多的连线。换句话说,该问题要求确定导线集Nets = {i,π(i),1 ≤ i ≤ n}的最大不相交子集。    

     2、最优子结构性质:

     记N(i,j) = {t|(t, π(t)) ∈ Nets,t ≤ i, π(t) ≤ j }. N(i,j)的最大不相交子集为MNS(i,j)Size(i,j)=|MNS(i,j)|。

     (1)当i = 1时

    

    (2)当i >1时

    ① j <π(i)。此时,(i,π(i)) 不属于N(i,j)。故在这种情况下,N(i,j) = N(i-1,j),从而Size(i,j)=Size(i-1,j)。

    ② j ≥π(i)。此时,若(i, π(i))∈MNS(i,j),则对任意(t, π(t))∈MNS(i,j)有t < i且π(t)< π(i);否则,(t, π(t))与(i, π(i))相交。在这种情况下MNS(i,j)-{(i, π(i))}是N(i-1, π(i)-1)的最大不相交子集。否则,子集MNS(i-1, π(i)-1)∪{(i, π(i))}包含于N(i,j)是比MNS(i,j)更大的N(i,j)的不相交子集。这与MNS(i,j)的定义相矛盾。

     若(i, π(i))不属于MNS(i,j),则对任意(t, π(t))∈MNS(i,j),有t<i。从而MNS(i,j)包含于N(i-1,j),因此,Size(i,j)≤Size(i-1,j)。

     另一方面,MNS(i-1,j)包含于N(i,j),故又有Size(i,j) ≥Size(i-1,j),从而Size(i,j)= Size(i-1,j)。

     3、递推关系

     电路布线问题的最优值为Size(n,n)。由该问题的最优子结构性质可知,子问题最优值的递归关系如下:

     自底向上,先算上排接线柱只有1个,2个的最优布线,然后求上排接线柱有多个的最优布线。具体代码如下:

//3d8 动态规划 电路布线问题
#include "stdafx.h"
#include <iostream> 
using namespace std; 
 
const int N = 10;
 
void MNS(int C[],int n,int **size);
void Traceback(int C[],int **size,int n,int Net[],int& m);
 
int main()
{
    int c[] = {0,8,7,4,2,5,1,9,3,10,6};//下标从1开始
    int **size = new int *[N+1];
 
    for(int i=0; i<=N; i++)
    {
        size[i] = new int[N+1];
    }
 
    MNS(c,N,size);
 
    cout<<"电路布线最大不相交连线数目为:"<<size[N][N]<<endl;
 
    int Net[N],m;
    Traceback(c,size,N,Net,m);
 
    cout<<"最大不相交连线分别为:"<<endl;
    for(int i=m-1; i>=0; i--)
    {
        cout<<"("<<Net[i]<<","<<c[Net[i]]<<") ";
    }
    cout<<endl;
    return 0;
}
 
void MNS(int C[],int n,int **size)
{
    for(int j=0;j<C[1];j++)
    {
        size[1][j]=0;
    }
 
    for(int j=C[1]; j<=n; j++)
    {
        size[1][j]=1;
    }
 
    for(int i=2; i<n; i++)
    {
        for(int j=0; j<C[i]; j++)
        {
            size[i][j]=size[i-1][j];//当i<c[i]的情形
        }
        for(int j=C[i]; j<=n; j++)
        {
            //当j>=c[i]时,考虑(i,c[i])是否属于MNS(i,j)的两种情况
            size[i][j]=max(size[i-1][j],size[i-1][C[i]-1]+1);
        }
    }
    size[n][n]=max(size[n-1][n],size[n-1][C[n]-1]+1);
}
 
void Traceback(int C[],int **size,int n,int Net[],int& m)
{
    int j=n;
    m=0;
    for(int i=n;i>1;i--)
    {
        if(size[i][j]!=size[i-1][j])//此时,(i,c[i])是最大不相交子集的一条边
        {
            Net[m++]=i;
            j=C[i]-1;//更新扩展连线柱区间
        }
    }
    if(j>=C[1])//处理i=1的情形
    {
        Net[m++]=1;
    }
}
     算法MNS时间和空间复杂度为O(n^2)。Traceback时间复杂度为O(n)。程序运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值