BLIP:Bootstrapping Language-Image复现

该文指导如何进行图像检索模型的训练。首先,需要下载COCO2014数据集和预训练模型。接着,修改retrieval_coco.yaml配置文件,特别是数据集路径和batchsize。在trian_retrieval.py中更新配置文件路径和输出目录。最后,对于单GPU环境,使用CUDA_VISIBLE_DEVICES和torch.distributed.launch来运行训练脚本。
摘要由CSDN通过智能技术生成

1) 数据集准备

coco2014下载地址

2) 下载预训练模型

model_base_retrieval_coco.pth

3)修改配置文件retrieval_coco.yaml

  • 修改数据集路径:image_root
  • 修改batchsize,根据电脑情况

4) 修改trian_retrieval.py

这里的代码要改掉:
parser.add_argument(‘–config’, default=‘./configs/retrieval_flickr.yaml’)
parser.add_argument(‘–output_dir’, default=‘output/Retrieval_flickr’)

5)运行代码

对于单卡的情况,代码需要修改

CUDA_VISIBLE_DEVICES="0" python -m torch.distributed.launch --nproc_per_node=1 train_retrieval.py --config xxx --output_dir xxx --evaluate
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值