1) 数据集准备
coco2014下载地址
2) 下载预训练模型
model_base_retrieval_coco.pth
3)修改配置文件retrieval_coco.yaml
- 修改数据集路径:image_root
- 修改batchsize,根据电脑情况
4) 修改trian_retrieval.py
这里的代码要改掉:
parser.add_argument(‘–config’, default=‘./configs/retrieval_flickr.yaml’)
parser.add_argument(‘–output_dir’, default=‘output/Retrieval_flickr’)
5)运行代码
对于单卡的情况,代码需要修改
CUDA_VISIBLE_DEVICES="0" python -m torch.distributed.launch --nproc_per_node=1 train_retrieval.py --config xxx --output_dir xxx --evaluate
该文指导如何进行图像检索模型的训练。首先,需要下载COCO2014数据集和预训练模型。接着,修改retrieval_coco.yaml配置文件,特别是数据集路径和batchsize。在trian_retrieval.py中更新配置文件路径和输出目录。最后,对于单GPU环境,使用CUDA_VISIBLE_DEVICES和torch.distributed.launch来运行训练脚本。
213

被折叠的 条评论
为什么被折叠?



