对于最长上升子序列,我们最开始最常用的就是用dp,用两个for循环来暴力计算结果,时间复杂度为n^2,要求串的长度不能超过10^4,而有些有需要我们处理高达10^7次方到10^8次方,用的优化方法是贪心加二分,
我们用dp的时候会存下所有的序列,然而我们需要的只是最长的,那我们就可以处理一个数组sum,它记录的是计算到i时最长串长度为len,len-1,len-2,到1 的串的最后一个数这样做的原因就是我们需要求的是最长的串,但每一次能让串长度增加的都是比最后一个还要大的,那它之前的数据完全是不需要的 ,我就可以用来记录 len-1长度时末位数最小的
例如 2 4 6 3 5 1 6
原数据p[0]=2 p[1]=4 p[2]=6 p[3]=3 p[4]=5 p[5]=1 p[6]=6
len =0; sum[len]=p[0] /*初始化*/
sum[len]<p[i] : p[i]比长度为len的数组的末位数大 处理 p[++len]=p[i]
sum[len]=p[i] : 可以不用处理
sum[len]>p[i] : p[i]的数据比长度为len时的末尾数小, 但是它有可能比长度 小于len某位末尾数字小替换
处理 int s=lower_bound(sum,sum+len,p[i])-sum

本文介绍了如何使用贪心和二分查找优化最长上升子序列问题的解决方案,从暴力的n^2时间复杂度降低到n*logn。通过维护一个有序数组sum,记录不同长度上升子序列的末尾元素,从而在处理过程中减少不必要的计算,实现效率的提升。
最低0.47元/天 解锁文章
844

被折叠的 条评论
为什么被折叠?



