整理一篇文章记录问题和官方给出的回答
When training a model to modify validation #17726
- 就是说在别人训练一个模型给到另一个人测试时,如果这个模型是在v8基础上进行修改的(部分卷积或者网络深度、宽度等)那么别人运行pt时需要把修改的地方一一对应吗
- 回答:讨论地址
- 模型推理和验证不需要与训练代码完全一致,但是训练想要作为预训练模型时必须保证代码网络结构一致
Train at YoloV8 with rectangular training
- 训练时如何使用矩形大小训练代码(默认是正方形)
- 设置参数rect=True即可
- 讨论地址
About the optimizer #3360
- 关于优化器训练如何选择等问题
- 优化器在训练期间不会切换。在开始时选择后,它在整个训练过程中保持一致。
- Auto 模式根据数据集大小选择优化器。对于较小的数据集,通常选择 AdamW,而较大的数据集通常使用 SGD。
- 要对类似数据进行微调,我建议从 Adam 优化器和较低的学习率(例如 1e-4 或 1e-5)开始。这种方法有助于对预先训练的权重进行微调。根据您的特定数据集和训练结果根据需要进行调整。
- 讨论地址
SingleChannel Train #7526
video object detection #11665
- 视频流目标检测,如何在yolo中加入时间序列,目前还没有成熟的方案
- 讨论地址
Hello author, while using OBB to train my dataset, I found that the tilted boxes in the validation set images and training set images after training did not match. There were cases where the angles were skewed, and during my inference, the detection boxes were completely different from what I labeled #15573
- OBB检测框不准、角度偏移大的问题
- 目标大小会影响,缩小目标得到改善
- 加入角度损失得到改善
- 讨论地址
Freezing backbone for finetuning #13770
- 冻结网络微调模型
- 设置yolo train data=coco128.yaml model=yolov8n.pt epochs=100 freeze=10
- freeze实现冻结前多少层 10 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- 讨论地址
YOLOv8 for RGBD data #3432
- 关于如何使用yolov训练多通道数据,即大于3通道的数据
- 这个问题的接近方法没有实际验证,这里记录一下
- 讨论地址
yolov8目标检测的图片输入尺寸及预处理问题 #6994
TaskAlignedAssigner doesn’t take into account reg_max which affects prediction of large objects #11634
- 主要为reg_max相关内容
- 大目标增大reg_max
- 小目标减小reg_max
- 既有大目标也有小目标需要均衡考虑
- 讨论地址
High mAP50 (0.96) BUT Low mAP50:95 (0.58) in YOLOv8m-seg #10329
- 为什么map50很高,但是50-95却很低优化思路
- 讨论地址
Questions about training image size #20113
- 关于矩形训练、rect=true相关的问题
- https://github.com/ultralytics/ultralytics/issues/20113
610

被折叠的 条评论
为什么被折叠?



