第二课.初识机器学习

机器学习可应用在各个方面,本篇将在系统性进入机器学习方向前,初步认识机器学习,利用线性回归预测波士顿房价;

原理简介

利用线性回归最简单的形式预测房价,只需要把它当做是一次线性函数 y = k x + b y = kx+b y=kx+b 即可。我要做的就是利用已有数据,去学习得到这条直线,有了这条直线,则对于某个特征 x x x (比如住宅平均房间数)的任意取值,都可以找到直线上对应的房价 y y y,也就是模型的预测值。
从上面的问题看出,这应该是一个有监督学习中的回归问题,待学习的参数为实数 k k k和实数 b b b(因为就只有一个特征 x x x),从样本集合 s a m p l e sample sample中取出一对数据 ( x i , y i ) (x_{i},y_{i}) (xi,yi) x i x_{i} xi代入 k x + b kx+b kx+b得到输出 y ^ i \widehat{y}_{i} y i,MSE可以衡量预测输出与样本标注的接近程度,所以把MSE作为这个问题的损失函数,对于共 m m m个样本的集合,损失函数计算为:
J ( k , b ) = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 J(k,b)=\frac{1}{m}\sum_{i=1}^{m}(y_{i}-\widehat{y}_{i})^{2} J(k,b)=m1i=1m(yiy i)2
目的是让损失函数减小,可以通过梯度下降去更新参数{ k k k, b b b};如果学习率设为 α \alpha α,则更新可以写成:
k = k − α ∂ J ( k , b ) ∂ k k=k-\alpha \frac{\partial J(k,b)}{\partial k} k=kαkJ(k,b)
b = b − α ∂ J ( k , b ) ∂ b b=b-\alpha \frac{\partial J(k,b)}{\partial b} b=bαbJ(k,b)
一般需要遍历数据集迭代多次,才能得到一个较好的结果

波士顿房价数据集

房价预测的实现将基于sklearn(scikit-learn),sklearn中有多种数据集:

  • 自带的小数据集(packaged dataset):sklearn.datasets.load_<name>
  • 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name>
  • 自定义生成的数据集(Generated Dataset):sklearn.datasets.make_<name>

首先从sklearn的数据集获取内置数据集中的即波士顿房价数据:

from sklearn.datasets import load_boston

导入其他功能包和模块,导入线性回归模型:

# 使用sklearn 中的 train_test_split 划分数据集
from sklearn.model_selection import train_test_split

# 使用 sklearn 中的线性回归模型进行预测
from sklearn.linear_model import LinearRegression

# 使用 matplotlib 中的 pyplot 进行可视化
import matplotlib.pyplot as plt

加载数据集:

# 加载波士顿房价数据集,返回特征X和标签y
X, y = load_boston(return_X_y=True)

X.shape # (506, 13)
y.shape # (506,)

取出一个特征作为 x x x

# 只取第6列特征(方便可视化):住宅平均房间数
# 注意切片区间左闭右开
X = X[:,5:6]

划分为训练集和测试集,测试集取20%:

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=2020)

使用到sklearn.model_selection.train_test_split,函数形式为:

train_test_split(train_data, train_target, test_size, random_state,shuffle)
  • test_size:浮点数,在0 ~ 1之间,表示测试样本占比
  • random_state:随机种子,种子不同,每次调用时采样的样本不同;种子相同,每次调用时采样一致
  • shuffle = True,打乱样本数据的顺序

严格来说,对于有监督学习的数据集应分为训练集,验证集,测试集;训练集和验证集有标注,测试集没有标注,泛化能力在验证集上进行检验


划分后的训练数据:

X_train.shape # (404, 1)
y_train.shape # (404,)

建立线性回归模型

在sklearn下,机器学习建模非常方便:

  • 1.实例化模型,输入合适的超参数会使模型性能提升
  • 2.输入数据训练
  • 3.验证模型

建立线性回归模型如下:

# 创建线性回归对象
regr = LinearRegression()

# 使用训练集训练模型
regr.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = regr.predict(X_test)

注意到模型直到接收到训练数据,才最终确定具体形式,比如发现输入数据是(404,1),才确定线性回归形式为 k x + b kx+b kx+b,而不是 k x + c x + b kx+cx+b kx+cx+b
对结果进行可视化为:

# 画测试数据散点图
plt.scatter(X_test, y_test,  color='blue')

# 画线性回归模型对测试数据的拟合曲线
plt.plot(X_test, y_pred, color='red')

# 显示绘图结果
plt.show()

fig1

打印模型参数有(注意区分参数和超参数):

# 打印斜率和截距
print('斜率:{}, 截距:{}'.format(regr.coef_,regr.intercept_))

结果为:

斜率:[9.11163398], 截距:-34.47557789280662
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值