对于随机采样算法,在采样不全时,通常不能保证找到最优解,只能尽量找。根据搜索的方式,可以把随机算法分成两类:
- 蒙特卡罗方法(Monte Carlo Simulation):采样越多,越近似最优解;
- 拉斯维加斯方法(Las Vegas):采样越多,越有机会找到最优解;
注意蒙特卡罗方法,是一类随机方法的统称,拉斯维加斯方法也一样;
举个例子,假如筐里有100个苹果,目标是找最大的苹果,每次只允许闭眼拿1个。于是首先随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个,依次进行;每拿一次苹果,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,除非拿100次,否则无法肯定地说已经挑出了最大的那一个。这个挑选苹果的模拟,就属于蒙特卡罗方法——尽量找好的,但不保证是最好的;
而拉斯维加斯算法,则是另一种情况。假如有一把锁,给了100把钥匙,只有1把是正确的。于是每次随机拿1把钥匙去试,打不开就再换1把。尝试的次数越多,打开锁(找到最优解)的机会就越大,但在打开之前,那些错的钥匙都是没有用的。这个试钥匙的过程,就是拉斯维加斯方法——尽量找最好的,但不保证能找到
2535

被折叠的 条评论
为什么被折叠?



