其他算法-两大随机采样方法简介

对于随机采样算法,在采样不全时,通常不能保证找到最优解,只能尽量找。根据搜索的方式,可以把随机算法分成两类:

  • 蒙特卡罗方法(Monte Carlo Simulation):采样越多,越近似最优解;
  • 拉斯维加斯方法(Las Vegas):采样越多,越有机会找到最优解;

注意蒙特卡罗方法,是一类随机方法的统称,拉斯维加斯方法也一样;

举个例子,假如筐里有100个苹果,目标是找最大的苹果,每次只允许闭眼拿1个。于是首先随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个,依次进行;每拿一次苹果,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,除非拿100次,否则无法肯定地说已经挑出了最大的那一个。这个挑选苹果的模拟,就属于蒙特卡罗方法——尽量找好的,但不保证是最好的;

而拉斯维加斯算法,则是另一种情况。假如有一把锁,给了100把钥匙,只有1把是正确的。于是每次随机拿1把钥匙去试,打不开就再换1把。尝试的次数越多,打开锁(找到最优解)的机会就越大,但在打开之前,那些错的钥匙都是没有用的。这个试钥匙的过程,就是拉斯维加斯方法——尽量找最好的,但不保证能找到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值