其他算法-比例风险回归模型

比例风险回归模型(Proportional hazards model),又称为Cox模型(一种半参数模型),模型用于描述不随时间变化的多个特征对于在某一时刻死亡率的影响,Cox模型是生存分析中的一个常用模型;

首先考虑Cox模型的产生动机,假如我们现在要研究一个人从出生开始,到 t t t时刻死亡的概率为多大,直观来看:

  • 一方面,受到时间推移影响,一个健康的人,随着年龄增大,死亡的概率也会逐渐增大;
  • 另一方面,生存时间会受到一些客观因素的影响,一个吸烟的人在某一时刻 t t t死亡的概率,比一个不抽烟的同龄人概率更大;

我们可以发现两部分因素,一部分受到时间影响,这可以理解为理想情况下,不受任何外界影响下的死亡概率,其作为基准;另一部分受到客观因素影响,这些因素影响整体的概率,使得它在基准上增加或减少。

上面所说的 “ t t t时刻死亡的概率” 是不易量化的,为了从统计意义上去计算,现在提出新的指标:危险率

在时刻 t t t的危险率被定义为: t 时 刻 将 要 死 去 的 人 数 t 时 刻 依 然 存 活 的 总 人 数 \frac{t时刻将要死去的人数}{t时刻依然存活的总人数} tt这可以理解为 “某一个时刻危险人群的比例”,比如:假设在 t t t时刻前,原有10人, t t t时刻后有3人死亡,此时的危险率为0.3;

下面将用 “危险率” 与 (“时间” 和 “客观因素” )进行建模;

我们定义:

  • X X X:客观因素,由 m m m个因素(特征)组成: X = ( x 1 , x 2 , . . . , x m ) X=(x_{1},x_{2},...,x_{m}) X=(x1,x2,...,xm)
  • t t t:时间
  • h ( t , X ) h(t,X) h(t,X):当时间为 t t t,客观因素为 X X X时的危险率

模型如下 h ( t , X ) = h 0 ( t ) e x p ( β ⋅ X ) h(t,X)=h_{0}(t)exp(\beta\cdot X) h(t,X)=h0(t)exp(βX)其中, h 0 ( t ) h_{0}(t) h0(t)是一个仅与时间相关的函数,可以选择概率论中的Weibull分布,指数分布等, β \beta β是模型的参数,只要给定数据,就能求出模型的参数 β \beta β

对模型进行变形,得到: l n ( h ( t , X ) ) = β ⋅ X + l n ( h 0 ( t ) ) ln(h(t,X))=\beta\cdot X+ln(h_{0}(t)) ln(h(t,X))=βX+ln(h0(t))从上式可以看出,模型中客观因素与时间相互独立,同时,对数危险率与客观因素呈线性相关。这就是Cox回归中的两个基本假设;

参数的优化通过偏极大似然估计实现,极大似然估计的思想是,让已经发生的事件出现的可能性最大。而关于时间出现的可能性最大的含义是什么?

举一个例子说明,假如有3个输入样例,分别在时间 t = 1 , 3 , 5 t=1,3,5 t=1,3,5死去。我们希望我们的模型预测的结果是,当 t = 1 t=1 t=1时,第1个人死了,其它2个人活着,同时第1个人死掉的概率最大;当 t = 3 t=3 t=3时,第1,2个人死了,其它1个人活着,当 t = 5 t=5 t=5时,第3个人也死了;

如何达到上述目标,以 t = 1 t=1 t=1时为例,要想达到上述目标,一个可行的方法是,试图让第一个人死去的概率变大,让剩下的2人活着的概率变大(死去的概率变小),即: m a x   h ( t = 1 , X ( 1 ) ) , m i n   [ h ( t = 1 , X ( 2 ) ) + h ( t = 1 , X ( 3 ) ) ] max\, h(t=1,X^{(1)}),min\, [h(t=1,X^{(2)})+h(t=1,X^{(3)})] maxh(t=1,X(1)),min[h(t=1,X(2))+h(t=1,X(3))]然后将目标统一得到: m a x h ( t = 1 , X ( 1 ) ) h ( t = 1 , X ( 2 ) ) + h ( t = 1 , X ( 3 ) ) max\frac{h(t=1,X^{(1)})}{h(t=1,X^{(2)})+h(t=1,X^{(3)})} maxh(t=1,X(2))+h(t=1,X(3))h(t=1,X(1))以此类推,得到 t = 3 t=3 t=3时的目标: m a x h ( 3 , X ( 2 ) ) h ( 3 , X ( 3 ) ) max\frac{h(3,X^{(2)})}{h(3,X^{(3)})} maxh(3,X(3))h(3,X(2)) t = 5 t=5 t=5时,由于已经没有人存活,分母为0,所以一律取分子添加到分母进行平滑,从而得到三个目标: m a x h ( 1 , X ( 1 ) ) h ( 1 , X ( 2 ) ) + h ( 1 , X ( 3 ) ) + h ( 1 , X ( 1 ) ) , m a x h ( 3 , X ( 2 ) ) h ( 3 , X ( 3 ) ) + h ( 3 , X ( 2 ) ) , m a x h ( 5 , X ( 3 ) ) h ( 5 , X ( 3 ) ) max\frac{h(1,X^{(1)})}{h(1,X^{(2)})+h(1,X^{(3)})+h(1,X^{(1)})},max\frac{h(3,X^{(2)})}{h(3,X^{(3)})+h(3,X^{(2)})},max\frac{h(5,X^{(3)})}{h(5,X^{(3)})} maxh(1,X(2))+h(1,X(3))+h(1,X(1))h(1,X(1)),maxh(3,X(3))+h(3,X(2))h(3,X(2)),maxh(5,X(3))h(5,X(3))得到似然函数为: L ( β ) = h ( 1 , X ( 1 ) ) h ( 1 , X ( 2 ) ) + h ( 1 , X ( 3 ) ) + h ( 1 , X ( 1 ) ) h ( 3 , X ( 2 ) ) h ( 3 , X ( 3 ) ) + h ( 3 , X ( 2 ) ) h ( 5 , X ( 3 ) ) h ( 5 , X ( 3 ) ) L(\beta)=\frac{h(1,X^{(1)})}{h(1,X^{(2)})+h(1,X^{(3)})+h(1,X^{(1)})}\frac{h(3,X^{(2)})}{h(3,X^{(3)})+h(3,X^{(2)})}\frac{h(5,X^{(3)})}{h(5,X^{(3)})} L(β)=h(1,X(2))+h(1,X(3))+h(1,X(1))h(1,X(1))h(3,X(3))+h(3,X(2))h(3,X(2))h(5,X(3))h(5,X(3))代入模型表达式,可以消除 h 0 ( t ) h_{0}(t) h0(t)得到: L ( β ) = e x p ( β ⋅ X ( 1 ) ) e x p ( β ⋅ X ( 2 ) ) + e x p ( β ⋅ X ( 3 ) ) + e x p ( β ⋅ X ( 1 ) ) e x p ( β ⋅ X ( 2 ) ) e x p ( β ⋅ X ( 3 ) ) + e x p ( β ⋅ X ( 2 ) ) e x p ( β ⋅ X ( 3 ) ) e x p ( β ⋅ X ( 3 ) ) L(\beta)=\frac{exp(\beta\cdot X^{(1)})}{exp(\beta\cdot X^{(2)})+exp(\beta\cdot X^{(3)})+exp(\beta\cdot X^{(1)})}\frac{exp(\beta\cdot X^{(2)})}{exp(\beta\cdot X^{(3)})+exp(\beta\cdot X^{(2)})}\frac{exp(\beta\cdot X^{(3)})}{exp(\beta\cdot X^{(3)})} L(β)=exp(βX(2))+exp(βX(3))+exp(βX(1))exp(βX(1))exp(βX(3))+exp(βX(2))exp(βX(2))exp(βX(3))exp(βX(3))因此,我们将其称为比例风险模型,就是因为 h 0 ( t ) h_{0}(t) h0(t)可以被消去,参数估计的时候与之无关;

将上面的内容推广并泛化,假设共有 N N N个事件,第 i i i个样本的风险特征(客观因素)为 X ( i ) X^{(i)} X(i),发生事件(死亡)的时间为 t i t_{i} ti,由此得到极大似然函数: L ( β ) = ∏ i = 1 N e x p ( β ⋅ X ( i ) ) ∑ j : t j ≥ t i e x p ( β ⋅ X ( j ) ) L(\beta)=\prod_{i=1}^{N}\frac{exp(\beta\cdot X^{(i)})}{\sum_{j:t_{j}\geq t_{i}}exp(\beta\cdot X^{(j)})} L(β)=i=1Nj:tjtiexp(βX(j))exp(βX(i))其中, j : t j ≥ t i j:t_{j}\geq t_{i} j:tjti表示样本 j j j的死亡时间在样本 i i i之后,因此说明样本 j j j是处于生存状态的;

取对数似然函数后为: l ( β ) = l n   L ( β ) = ∑ i = 1 N [ β ⋅ X ( i ) − l n ( ∑ j : t j ≥ t i e x p ( β ⋅ X ( j ) ) ) ] l(\beta)=ln\, L(\beta)=\sum_{i=1}^{N}[\beta\cdot X^{(i)}-ln(\sum_{j:t_{j}\geq t_{i}}exp(\beta\cdot X^{(j)}))] l(β)=lnL(β)=i=1N[βX(i)ln(j:tjtiexp(βX(j)))]然后计算梯度 ∂ l ( β ) ∂ β \frac{\partial l(\beta)}{\partial\beta} βl(β)通过梯度下降法进行参数估计求出 β \beta β,之后我们将可以通过这个Cox模型对相似分布的数据做回归分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值