数据结构简介

数据结构是为实现对计算机数据有效使用的各种数据组织形式,服务于各类计算机操作。不同的数据结构具有各自对应的适用场景,旨在降低各种算法计算的时间与空间复杂度,达到最佳的任务执行效率。

如下图所示,常见的数据结构可分为「线性数据结构」与「非线性数据结构」,具体为:「数组」、「链表」、「栈」、「队列」、「树」、「图」、「散列表」、「堆」。

fig1

数组

数组是将相同类型的元素存储于连续内存空间的数据结构,其长度不可变。

如下图所示,构建此数组需要在初始化时给定长度,并对数组每个索引元素赋值:
fig2
「可变数组」是经常使用的数据结构,其基于数组和扩容机制实现,相比普通数组更加灵活。常用操作有:访问元素、添加元素、删除元素。

链表

链表以节点为单位,每个元素都是一个独立对象,在内存空间的存储是非连续的。链表的节点对象具有两个成员变量:「值 val」,「后继节点引用 next」 。

class ListNode:
    def __init__(self, x):
        self.val = x     # 节点值
        self.next = None # 后继节点引用

如下图所示,建立此链表需要实例化每个节点,并构建各节点的引用指向。

# 实例化节点
n1 = ListNode(4) # 节点 head
n2 = ListNode(5)
n3 = ListNode(1)

# 构建引用指向
n1.next = n2
n2.next = n3

fig3

栈是一种具有 「先入后出」 特点的抽象数据结构,可使用数组或链表实现。

stack = [] # Python 可将列表作为栈使用

如下图所示,通过常用操作「入栈 push()」,「出栈 pop()」,展示了栈的先入后出特性。

stack.append(1) # 元素 1 入栈
stack.append(2) # 元素 2 入栈
stack.pop()     # 出栈 -> 元素 2
stack.pop()     # 出栈 -> 元素 1

fig4

队列

队列是一种具有 「先入先出」 特点的抽象数据结构,可使用链表实现。

# Python 通常使用双端队列 collections.deque
from collections import deque

queue = deque()

如下图所示,通过常用操作「入队 push()」,「出队 pop()」,展示了队列的先入先出特性。

queue.append(1) # 元素 1 入队
queue.append(2) # 元素 2 入队
queue.popleft() # 出队 -> 元素 1
queue.popleft() # 出队 -> 元素 2

fig5

树是一种非线性数据结构,根据子节点数量可分为 「二叉树」 和 「多叉树」,最顶层的节点称为「根节点 root」。以二叉树为例,每个节点包含三个成员变量:「值 val」、「左子节点 left」、「右子节点 right」 。

class TreeNode:
    def __init__(self, x):
        self.val = x      # 节点值
        self.left = None  # 左子节点
        self.right = None # 右子节点

如下图所示,建立此二叉树需要实例化每个节点,并构建各节点的引用指向。

# 初始化节点
n1 = TreeNode(3) # 根节点 root
n2 = TreeNode(4)
n3 = TreeNode(5)
n4 = TreeNode(1)
n5 = TreeNode(2)

# 构建引用指向
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5

fig6

图是一种非线性数据结构,由「节点(顶点)vertex」和「边 edge」组成,每条边连接一对顶点。根据边的方向有无,图可分为「有向图」和「无向图」。以无向图为例开展介绍。

如下图所示,此无向图的 顶点 和 边 集合分别为:

顶点集合: vertices = {1, 2, 3, 4, 5}
边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}

fig7
表示图的方法通常有两种:邻接矩阵和邻接表。
fig8

vertices = [1, 2, 3, 4, 5]
edges = [[0, 1, 1, 1, 1],
         [1, 0, 0, 1, 0],
         [1, 0, 0, 0, 1],
         [1, 1, 0, 0, 1],
         [1, 0, 1, 1, 0]]

fig9

vertices = [1, 2, 3, 4, 5]
edges = [[1, 2, 3, 4],
         [0, 3],
         [0, 4],
         [0, 1, 4],
         [0, 2, 3]]

对于邻接矩阵和邻接表,邻接矩阵的大小只与节点数量有关,即 N 2 N^{2} N2,其中 N N N 为节点数量。因此,当边数量明显少于节点数量时,使用邻接矩阵存储图会造成较大的内存浪费。

因此,邻接表 适合存储稀疏图(顶点较多、边较少); 邻接矩阵 适合存储稠密图(顶点较少、边较多)。


散列表

散列表是一种非线性数据结构,通过利用 Hash 函数将指定的「键 key」映射至对应的「值 value」,以实现高效的元素查找。

设想一个简单场景:小力、小特、小扣的学号分别为 10001, 10002, 10003 。
现需求从「姓名」查找「学号」。

则可通过建立姓名为 key ,学号为 value 的散列表实现此需求,代码如下:

# 初始化散列表
dic = {}

# 添加 key -> value 键值对
dic["小力"] = 10001
dic["小特"] = 10002
dic["小扣"] = 10003

# 从姓名查找学号
dic["小力"] # -> 10001
dic["小特"] # -> 10002
dic["小扣"] # -> 10003

fig10


Hash 函数设计 Demo :
假设需求:从「学号」查找「姓名」。

将三人的姓名存储至以下数组中,则各姓名在数组中的索引分别为 0, 1, 2 。

names = [ "小力", "小特", "小扣" ]

此时,我们构造一个简单的 Hash 函数( % \% % 为取余符号 ),公式和封装函数如下所示: h a s h ( k e y ) = ( k e y − 1 ) % 10000 hash(key)=(key-1)\%10000 hash(key)=(key1)%10000

def hash(id):
    index = (id - 1) % 10000
    return index

则我们构建了以学号为 key 、姓名对应的数组索引为 value 的散列表。利用此 Hash 函数,则可在 O ( 1 ) O(1) O(1) 时间复杂度下通过学号查找到对应姓名,即:

names[hash(10001)] // 小力
names[hash(10002)] // 小特
names[hash(10003)] // 小扣

fig11
以上设计只适用于此示例,实际的 Hash 函数需保证低碰撞率、 高鲁棒性等,以适用于各类数据和场景。


堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。

完全二叉树定义: 设二叉树深度为 k k k ,若二叉树除第 k k k 层外的其它各层(第 1 至 k − 1 k−1 k1 层)的节点达到最大个数,且处于第 k k k 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。

如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。
fig12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值