药物相互作用概述
药物相互作用(DDI)被描述为一种药物的药效因另一种药物的存在而发生变化。DDI可以引起药学(PC),药代动力学(PK),药效学(PD)的不同反应类型:
- PC DDI的发生是由物理或化学的不相容性导致的;
- 药物与药物的相互影响在吸收,代谢和排泄(ADME)过程中,会发生PK DDI;
- 当一种药物因为另一种同浓度的药物产生药效学反应时,会出现PD DDI。
近年来,AI在DDI预测上得到应用,通过对药物相互作用数据建模,可以构建药物联用系统,避免产生不良反应。大量与药物相关的信息和数据(比如,生物医学文本,电子健康记录,公共数据库)的可用性为AI的发展提供了基础。
相比于依赖复杂的物理化学专业知识的传统方法,机器学习方法聚焦海量药物数据,通过学习,识别药物数据中的潜在模式和知识。
AI在DDI的应用
AI在DDI领域得到应用,现有方法主要分为基于文献的提取方法和基于药物关联数据的预测方法。
基于文献的提取方法
关于药物的知识更多隐藏在大量生物医学文献这种非结构化数据中。生物医学文献中包含最有价值的关于药物相互作用的描述信息。NLP可以为从文献提取DDI起到作用。这类方法旨在从文本信息中检测DDI,其目标是通过分析提及药物实体对相关的文档来识别实体对之间的特定关系。2011年和2013年的DDIExtraction比赛引起了关注,他们为基于文献数据的DDI提取任务提供了带标注的语料库。
基于文献的提取方法中使用的数据来源主要是公开的文献语料库。例如,DDIExtraction 2013语料库是整合了DrugBank和MEDLINE数据库的数据集,由792个DrugBank文档和233个MEDLINE摘要组成。DrugBank提供了广泛的与生化和药理学信息相关的文档。MEDLINE是一个国际生物医学信息书目数据库。目前多数方法基于DDIExtraction 2013语料库来提取和分类DDI。语料库将DDI分类为四种类型:mechanism(药代动力学机制),effect(药效学机制),advice(建议不同时服用两种药物)和int(无进一步信息)。
基于文献的提取方法首先获取描述文档(样本)的表征,然后对表征进行分类,分类为上述四种类型。

- DDIExtraction语料库的文本示例。目标是根据文本sentence,提取出结构化的数据pair,并获得pair的类别type。
基于药物关联数据的预测方法
基于药物关联数据的预测方法利用数据库中已知的药物相互作用pair和药物特征建模。这类方法依赖药物特定数据库,包括DrugBank,FAERS,SIDER,TWO-SIDES和OFFSIDES。DrugBank提供了多种综合信息,包括FDA批准的小分子和生物技术药物,是一个整合了生物信息学的药物知识库。FAERS是一个包含FDA记录的不良事件信息的数据库。SIDER提供了上市药物记录的不良反应信息。TWOSIDES是通过挖掘来自FAERS的DDI引起的副作用开发的数据集,包含645种药物,对应63473种不同药物组合引起的副作用。OFFSIDES数据库包含438802种药物副作用。
基于药物关联数据的预测方法可分为两类:基于相似性的方法和基于深度学习的方法。
基于相似性的方法
相似性在模式分类中起到关键作用。基本概念为:药物A和药物B之间存在相互作用,药物C与药物A相似,则药物B和药物C之间可能存在相互作用。这些方法利用各种相似性度量构建分类特征,然后根据分类规则获得潜在DDI的概率。
基于深度学习的方法
基于深度学习的方法又分为:
- 基于药物实体:基于药物的化学结构计算药物的特征表示,然后再进行DDI预测,也可以引入药物对应的多模态数据(包括文本描述,1D SMILES序列,2D分子结构,3D分子结构)。
大部分医学实体之间的关系可以抽象为图结构,药物的药效与性质和功能相关,而功能基本由分子结构(官能团)决定。 - 基于知识图:药物实体可以根据生信知识构建药物关联网络以及与其他生物实体构建的网络(知识图谱)。
- 基于矩阵分解:DDI预测可以视为矩阵补全任务,旨在对未观察到的药物相互作用进行预测。基于矩阵分解的方法通常对药物-药物相互作用的邻接矩阵进行运算。
比如流形学习,将高维数据投影到低维空间,并学习潜在信息以重建原始特征(矩阵补全)。
DDI发展前景
构建数据集
DDI数据集目前面临问题包括:数据量少,样本不均衡(缺乏实验验证的负样本)。对于现有数据集,大部分方法将未标记的样本都视为负样本,但其实可能包含潜在的正样本。因此,正样本无标签学习是解决该问题的技术之一。
药物事件预测
目前大部分方法聚焦于预测药物之间是否存在相互作用,然而,药物相互作用可能会引起不同的后果和后续事件。

- 药物相互作用事件。
在上图中,药物Itraconazole和药物Dabrafenib发生作用会引起机体的血清浓度下降,但和药物Abemaciclib发生作用会增加不良反应程度。
药物事件预测是具有挑战性的,越来越多研究者构建了高质量数据集。Ryu从DrugBank收集的药物事件数据分类为86种类型。受益于这些高质量数据集,目前方法更多倾向于预测DDI事件类型。而这个领域依然有很大改进空间,比如,有标签的DDI事件样本依然很少,其次,数据集中类别不平衡也是一个大问题。
预测高阶药物相互作用
大多数方法集中在两种药物同时使用的DDI预测,现在,预测三种或多种药物联合使用的事件更具挑战。
整合多源数据
来自文献的文本数据和来自数据库的药物特征提供了充分的药物信息,因此,整合这两个数据源可以补充DDI的知识。
189

被折叠的 条评论
为什么被折叠?



