人工智能工具使公司能够共享候选药物数据,同时保证敏感信息的安全,可以释放机器学习和尖端实验室技术的潜力,以实现共同利益。来自:AI can help to speed up drug discovery — but only if we give it the right data, nature, 2023
研究内容
我们需要更多的蛋白质药物。与基于较小分子的药物相比,蛋白质的大尺寸和大表面积意味着由它们制成的药物与靶分子(包括与疾病相关的体内蛋白质)发生相互作用的方式更多。因此,基于蛋白质的药物在治疗方面具有广泛的潜力。例如,像nivolumab和pembrolizumab这样的蛋白质药物可以防止肿瘤蛋白质与免疫细胞上的受体蛋白质之间的有害相互作用。相比之下,小分子药物不足以夹在这两种蛋白质之间并阻止它们相互作用。
因为蛋白质可能具有多个结合位点,因此可以设计药物将其(蛋白质药物)附着到多个靶点上,例如既可以附着到癌细胞,也可以附着到免疫细胞。将这两者结合在一起可以确保癌细胞被摧毁。为了解决药物开发的瓶颈问题,必须改进关于蛋白质药物在体内可能如何发挥作用的计算模型。研究人员需要能够判断药物有效剂量,它们将如何与体内的蛋白质相互作用,是否可能引发不希望的免疫反应等等问题。
要更好地预测未来的药物候选物,需要收集大量关于为什么先前的药物在临床试验中成功或失败的数据。为了训练有效的机器学习模型,需要大量的蛋白质数据,可能涉及数百个甚至数千个蛋白质。然而,即使是最高产的生物制药公司在2011年到2021年间,平均每年也仅开始了3到12个蛋白质药物的临床试验(单个制药公司无法单独积累足够的数据)。
将人工智能(AI)纳入药物开
人工智能在药物发现中发挥重要作用,通过联邦学习和主动学习,公司能在保护敏感数据的同时分享信息,提高药物开发效率。联邦学习允许公司更新共享模型而不共享数据,主动学习则通过智能选择样本减少标注成本,两者结合有望进一步提升预测性能。
最低0.47元/天 解锁文章
1135

被折叠的 条评论
为什么被折叠?



