生物计算工具
文章平均质量分 92
收集记录生物计算相关的各类工具,以及其使用方法
tzc_fly
2017-2021:华中科技大学本科,2021-至今:中山大学博士
展开
-
Mowgli方法细节与可解释性实验设置
Mowgli的方法细节和可解释性实验设置原创 2024-09-23 11:25:46 · 901 阅读 · 0 评论 -
Geneformer中文教程(2).huggingface transformers
Geneformer中文教程(2)原创 2024-09-14 19:00:36 · 1040 阅读 · 0 评论 -
Geneformer中文教程(1).方法描述
Geneformer中文教程(1)原创 2024-09-13 16:59:02 · 1515 阅读 · 0 评论 -
5.基于python的scRNA-seq细胞状态分析-细胞扰动
scRNA-seq细胞扰动分析原创 2024-05-28 14:34:09 · 1229 阅读 · 0 评论 -
5.基于python的scRNA-seq细胞状态分析-细胞组成
scRNA-seq细胞组成分析原创 2024-05-22 20:32:30 · 824 阅读 · 0 评论 -
5.基于python的scRNA-seq细胞状态分析-差异表达
scRNA-seq差异表达分析原创 2024-05-22 14:09:42 · 933 阅读 · 0 评论 -
4.基于python的scRNA-seq轨迹推断-RNA速率
scRNA-seq估计RNA速率+伪时间估计原创 2024-05-19 17:53:07 · 924 阅读 · 0 评论 -
4.基于python的scRNA-seq轨迹推断-伪时间计算
scRNA-seq伪时间计算+PAGA模拟轨迹原创 2024-05-19 14:01:30 · 854 阅读 · 0 评论 -
3.基于python的scRNA-seq细胞类型注释-自动注释(从参考到查询)
scRNA-seq自动注释-参考到查询原创 2024-05-18 21:45:29 · 958 阅读 · 0 评论 -
3.基于python的scRNA-seq细胞类型注释-自动注释
scRNA-seq自动注释原创 2024-05-18 18:28:54 · 1503 阅读 · 0 评论 -
3.基于python的scRNA-seq细胞类型注释-手动注释
scRNA-seq手动注释原创 2024-05-17 17:11:47 · 1053 阅读 · 0 评论 -
2.基于Python的单细胞转录组数据处理-批次整合
scRNA-seq数据处理-批次整合原创 2024-05-16 18:11:09 · 1305 阅读 · 0 评论 -
1.基于python的单细胞数据预处理-降维可视化
scRNA-seq预处理-降维可视化原创 2024-05-11 18:06:34 · 1112 阅读 · 1 评论 -
1.基于python的单细胞数据预处理-特征选择
scRNA-seq预处理-HVG选择原创 2024-05-10 23:34:20 · 905 阅读 · 2 评论 -
1.基于python的单细胞数据预处理-归一化
scRNA-seq预处理-归一化原创 2024-05-10 20:29:09 · 1040 阅读 · 0 评论 -
1.基于python的单细胞数据预处理-质量控制
scRNA-seq预处理-质量控制原创 2024-05-09 17:33:07 · 1447 阅读 · 2 评论 -
跨领域的小样本药物发现基准
小样本药物发现基准MetaMol-Net原创 2024-04-09 18:53:16 · 868 阅读 · 0 评论 -
元学习结合图神经网络用于药物发现
小样本分子性质预测Meta-GAT原创 2024-04-09 13:47:00 · 1064 阅读 · 1 评论 -
几何相互作用GNN预测3D-PLA
GIGN原创 2024-03-14 21:49:58 · 1224 阅读 · 0 评论 -
从3D结构中增强蛋白质-配体的结合亲和力预测
基于3D结构的PLA预测原创 2024-03-13 16:10:19 · 1219 阅读 · 0 评论 -
DeepDrug:一个用于DDI和DTI预测的GNN框架
DeepDrug原创 2024-02-21 14:13:14 · 1425 阅读 · 0 评论 -
DDI中的自适应子结构
SA-DDI原创 2024-02-20 23:12:10 · 1008 阅读 · 0 评论 -
ZeroBind:DTI零样本预测器
MAML优化,子图学习口袋,从而实现零样本DTI预测原创 2024-01-09 12:51:37 · 1085 阅读 · 0 评论 -
DrugCLIP:用于虚拟筛选的对比蛋白-分子表示学习
输入小分子和口袋的DTI零样本判别原创 2024-01-08 13:41:29 · 1705 阅读 · 0 评论 -
蛋白质语言空间下的对比学习预测DTI
基于PLM的DTI预测原创 2023-12-09 12:46:13 · 512 阅读 · 0 评论 -
增强负样本提高CPI表现
提高CPI表现的训练策略原创 2023-10-05 16:32:29 · 377 阅读 · 0 评论 -
AI驱动的靶点发现综述
AI驱动靶点识别原创 2023-08-05 11:20:10 · 1078 阅读 · 0 评论 -
支持域自适应的可解释网络改进药物-靶标预测
尽管目前出现了很多优秀的DTI预测方法,但现有的基于DL的方法仍存在两个挑战。第一个挑战是如何明确了解药物和蛋白质的局部结构之间的相互作用。DTI基本上由药物化合物中的重要分子亚结构和蛋白质序列中的结合位点之间的相互作用决定。然而,许多先前的研究在各自的编码器中只学习全局表示,而没有明确地学习药物和靶标之间的局部交互。单独的全局表示学习往往会限制建模能力和预测性能。此外,如果没有对局部交互的显式学习,即使模型的预测是准确的,其预测结果也很难解释。原创 2023-02-20 12:01:24 · 1121 阅读 · 0 评论 -
人工智能辅助药物发现(8)可解释性
AIDD:XAI与药物发现原创 2023-02-09 12:36:20 · 696 阅读 · 0 评论 -
人工智能辅助药物发现(7)大规模预训练模型
AIDD:预训练分子表征原创 2023-02-07 22:23:06 · 584 阅读 · 0 评论 -
人工智能辅助药物发现(6)药物相互作用
AIDD:药物相互作用原创 2023-02-07 01:16:15 · 1172 阅读 · 0 评论 -
人工智能辅助药物发现(5)药物属性预测
AIDD:药物属性预测原创 2023-02-05 17:18:36 · 1332 阅读 · 0 评论 -
人工智能辅助药物发现(4)药物重定位
AIDD:药物重定位原创 2023-01-22 19:12:09 · 2158 阅读 · 0 评论 -
人工智能辅助药物发现(3)药物从头设计
AIDD:药物从头设计原创 2023-01-20 21:44:41 · 1066 阅读 · 0 评论 -
人工智能辅助药物发现(2)苗头化合物筛选
AIDD:先导化合物筛选原创 2023-01-19 17:32:33 · 2480 阅读 · 0 评论 -
人工智能辅助药物发现(1)肿瘤靶点识别
AIDD:肿瘤靶点识别原创 2023-01-17 21:01:21 · 1330 阅读 · 0 评论 -
关于drug-target interaction
对于药物靶标预测(drug-target interaction),上面两个任务都能节约时间成本,促进药物发现。深度学习在药物再利用和虚拟筛选方面表现出强大的性能。这两个任务都依赖于一项基本任务的准确和快速预测:药物-靶标相互作用预测。。给定一个强大的 DTI 模型,它能够泛化一个新的看不见的数据集,然后我们可以扩展到药物再利用和筛选(repurposing or screening)。原创 2022-09-27 00:44:53 · 1403 阅读 · 0 评论 -
Scanpy(七)基于scanorama整合scRNA-seq实现空间数据分析
本篇内容介绍如何使用多个Visium数据集,以及如何用scRNA-seq数据集进行整合。我们将使用Scanorama来进行整合。首先我们要安装Scanorama:加载相关框架:建议先阅读论文阅读笔记-利用Scanorama高效整合异质单细胞转录组我们将使用两个小鼠大脑的Visium空间转录组数据集,该数据集可从10x genomics website获取。函数从10x genomics下载数据集并返回adata对象(包含counts,images和spatial coordinates),我们使用计算原创 2022-06-24 15:11:30 · 2560 阅读 · 1 评论 -
Scanpy(六)空间转录组数据的分析与可视化
本篇内容演示如何在Scanpy中使用空间转录组数据(spatial transcriptomics data),首先,我们专注于10x Genomics Visium data,最后,我们为MERFISH技术的空间转录数据分析提供了示例。目前空间转录组技术基本上还未到单细胞水平,一般一个空间位置spots上有多个细胞,10X Genomics Visum一般为1-10个细胞,空间转录组学能够提供空间位置,但是分辨率达不到单细胞水平,单细胞转录组学分辨率能够达到单细胞分辨率,但是没有空间位置信息,因此将空间转原创 2022-06-11 19:32:12 · 13251 阅读 · 3 评论 -
Scanpy(五)小鼠造血数据的Trajectory inference
本篇内容将用Paul于2015年的数据实现轨迹分析。在此之前,先回顾PAGA:结合轨迹推断和聚类的工具。首先,导入工具,注意为了正常绘制下面的力导向图,我们需要提前安装:对数据进行进一步探索:注意标签,其实Ery是红细胞erythrocytes的简化符号标记(这种简化在PAGA论文中有说明)。下面我们以比默认“float32”更高的精度去实验,以确保在不同的计算平台上得到相同的结果。预处理和可视化这里,我们使用sc封装的简单预处理方法(该方法来自zheng于17年的工作):然后,进行主成分分析:原创 2022-06-01 21:49:24 · 2048 阅读 · 9 评论
分享