这个题有次比赛,硬是没做出来,队友当时在做别的,我一直在看这个竟然没做出来。。。然后自此再也没有做过这种题,今天翻到了,试着做做,没想到竟然如此之简单。
知道是dp
- ①dp[i][j]表示word1长度为i时,编辑成长度为j的word2最小需要几步。
- ②只有三种状态,删、增、替换,要么就是不需要操作。当前状态为dp[i][j]时,要么word1[i]==word2[j],此时不需要操作,直接令dp[i][j]=dp[i-1][j-1]即可,要么word1[i]!=word2[j]时,此时需要考虑三种情况:由word1删掉此时的字符而得到的此时状态时,用式子表达是这样的,dp[i-1][j]+1;另两种情况用式子表达起来分别是增dp[i][j-1]+1、替换dp[i-1][j-1]+1,最后比较三者大小即可,完全用式子表示是:dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j])+1;
- ③初始化考虑上面的式子i和j不能等于0,于是自然就想要把i等于0时和j等于0时的情况都初始化了。这里得牢记i和j表示的时长度,而不是index。
最后撸代码
class Solution {
public:
int minn(initializer_list<int>ls){//突然想到昨天刚学的
int ans = *ls.begin();
for(auto i=ls.begin()+1; i!=ls.end(); ++i){
ans = min(ans, *i);
}
return ans;
}
int minDistance(string word1, string word2) {
int s=word1.size(), t=word2.size();
vector<vector<int>> dp(s+1,vector<int>(t+1));
for(int i=0; i<=s; ++i) dp[i][0]=i;
for(int i=0; i<=t; ++i) dp[0][i]=i;
for(int i=1; i<=s; ++i){
for(int j=1; j<=t; ++j){
if(word1[i-1]==word2[j-1]) dp[i][j] = dp[i-1][j-1];
else{
dp[i][j] = minn({dp[i-1][j-1], dp[i-1][j], dp[i][j-1]}) + 1;
}
}
}
return dp[s][t];
}
};
空间优化一下
由于每行dp都只与上一行有关,上上行再往上的就可以直接舍弃了,因此可以用一维来优化。
class Solution {
public:
int minn(initializer_list<int>ls){
int ans = *ls.begin();
for(auto i=ls.begin()+1; i!=ls.end(); ++i){
ans = min(ans, *i);
}
return ans;
}
int minDistance(string word1, string word2) {
int s=word1.size(), t=word2.size();
vector<int> dp(t+1);
int temp;
for(int i=0; i<=t; ++i) dp[i]=i;
for(int i=1; i<=s; ++i){
temp = dp[0];
dp[0]=i;//这个地方的初始化忘了一次,忘记初始化第一列了。
for(int j=1; j<=t; ++j){
int mid = temp;
temp = dp[j];
if(word1[i-1]==word2[j-1]) dp[j] = mid;
else{
dp[j] = minn({mid, dp[j], dp[j-1]}) + 1;
}
}
}
return dp[t];
}
};
1037

被折叠的 条评论
为什么被折叠?



