函数空间:人为定义的满足一定规则的对象所组成集合。
我们最常用到的规则为:拓扑、距离、范数、内积
;
它们的限制是依次增强的,如果拓扑是植物,那么距离就是水果,范数就是热带水果,内积就是热带甜味水果。
(拓扑是弱化了的距离,距离定义了距离,范数在距离的基础上增加了||ax||=|a|·||x||,内积在范数的基础上引入了角度)
另一个规则是线性结构
:对加法和数乘封闭,同时满足条件


第三个规则是完备性
:空间中的任何柯西序列都收敛在该空间之内。简单来说就是进行极限运算时不会玩出圈儿。
有了以上的基本认识,我们就可以对具有各种性质的空间进行分类和命名啦~
- 以拓扑为规则的空间叫拓扑空间;以距离为规则的空间叫度量空间;以范数为规则的空间为赋范空间;以内积为规则的空间叫内积空间(内积空间已具有线性结构,有限维内积空间就是欧几里得空间)。
- 然后再加上线性结构这一规则就可以分别得到:拓扑线性空间、线性度量空间和线性赋范空间。
- 线性赋范空间引入完备性就构成巴拿赫空间,内积空间引入完备性就构成希尔伯特空间。
下面给出一张帮助理解的图:
