函数空间(巴纳赫空间、欧几里得空间、希尔伯特空间)

函数空间:人为定义的满足一定规则对象所组成集合。



我们最常用到的规则为:拓扑、距离、范数、内积
它们的限制是依次增强的,如果拓扑是植物,那么距离就是水果,范数就是热带水果,内积就是热带甜味水果。
(拓扑是弱化了的距离,距离定义了距离,范数在距离的基础上增加了||ax||=|a|·||x||,内积在范数的基础上引入了角度)




另一个规则是线性结构:对加法和数乘封闭,同时满足条件

需要注意的是,这里的加法和数乘的定义并不局限于通常意义上,只要满足条件即可,例如:


第三个规则是完备性:空间中的任何柯西序列都收敛在该空间之内。简单来说就是进行极限运算时不会玩出圈儿。



有了以上的基本认识,我们就可以对具有各种性质的空间进行分类和命名啦~

  • 以拓扑为规则的空间叫拓扑空间;以距离为规则的空间叫度量空间;以范数为规则的空间为赋范空间;以内积为规则的空间叫内积空间(内积空间已具有线性结构,有限维内积空间就是欧几里得空间)。
  • 然后再加上线性结构这一规则就可以分别得到:拓扑线性空间、线性度量空间和线性赋范空间。
  • 线性赋范空间引入完备性就构成巴拿赫空间,内积空间引入完备性就构成希尔伯特空间。

下面给出一张帮助理解的图:

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值