《凸优化》笔记(三):优化问题

本文转载自:https://blog.csdn.net/u010366427/article/details/51906763

笔记是根据《Convex Optimization》写的,对应第4章。

4 凸优化问题

4.1 优化问题的基本形式 

minimize f0(x)subject to fi(x)≤0, i=1,…,mhi(x)=0, i=1,…,pminimize f0(x)subject to fi(x)≤0, i=1,…,mhi(x)=0, i=1,…,p


  需要注意的是除了显式的约束外,每个函数还有隐式的定义域约束。整个问题的定义域是所有函数的定义域的交集。对于每个这样的问题,其最优解定义为: 

p∗=inf{f0(x)|fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p}p∗=inf{f0(x)|fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p}


局部最优解定义为在半径为RR的定义域范围内的最小值。如果这是个最小问题,则f0(x)f0(x)称为损失函数,如果是最大问题,则称为效用函数。 
4.2 凸优化 
  凸优化问题定义为如下形式: 

minimize f0(x)subject to fi(x)≤0, i=1,…,maTx=0, i=1,…,pminimize f0(x)subject to fi(x)≤0, i=1,…,maTx=0, i=1,…,p


其中,f0,…,fmf0,…,fm都是凸函数。非正式地来说,对于一个一般的优化问题,1)目标函数是凸函数;2)不等式约束是凸函数;3)等式约束是仿射函数,则这个问题是凸优化问题。同时,从以上的定义可以注意到,凸优化问题的可行域一定是凸集。如果目标函数是拟凸函数,则这个问题是拟凸问题。 
如果点xx满足如下等式,则该点是最优解: 

∇f(x)T(y−x)≥0∇f(x)T(y−x)≥0


体现在几何上,即 
凸优化 
有时候为了简化理论分析,可以将问题转化为线性的目标函数: 

minimize tsubject to fi(x)≤0, i=1,…,maTx=0, i=1,…,pf0(x)−t≤0minimize tsubject to fi(x)≤0, i=1,…,maTx=0, i=1,…,pf0(x)−t≤0


同时,可以通过如下方式求解拟凸问题: 

f0(x)≤t⟺ϕt(x)≤0f0(x)≤t⟺ϕt(x)≤0

 

find xsubject to fi(x)≤0, i=1,…,maTx=0, i=1,…,pϕt(x)≤0find xsubject to fi(x)≤0, i=1,…,maTx=0, i=1,…,pϕt(x)≤0


该方法通过在可行域上不停二分查找,找到一个恰好有可行域的tt,并且解出的的xx即为次优解。 
4.3 线性规划问题(LP) 
  问题可描述为: 

minimize cTx+dsubject to Gx≤hAx=bminimize cTx+dsubject to Gx≤hAx=b


  如下问题可以转换为线性规划: 
1) 营养搭配问题,即每个食物有其价格和营养含量,目标是组合这些食物,在花费最少的情况下满足每一种营养需求。 
2) 多边形的切比雪夫中心,即寻找多边形内半径最大圆的中心点。 
3) 多个仿射函数最大值 
4) 分片线性极小化 
这里写图片描述 

\begin{center}
线性规划的几何描述
\end{center}\begin{center}线性规划的几何描述\end{center}


4.4 二次规划(QP) 

minimize (1/2)xTPx+qTx+rsubject to Gx≤hAx=bminimize (1/2)xTPx+qTx+rsubject to Gx≤hAx=b


  其中PP为正定矩阵。如果其不等式约束为二次约束,则该问题为二次约束的二次规划(QCQP): 

minimize (1/2)xTPx+qTx+rsubject to (1/2)xTPix+qTix+ri, i=1,…,mAx=bminimize (1/2)xTPx+qTx+rsubject to (1/2)xTPix+qiTx+ri, i=1,…,mAx=b


  二次规划有如下问题: 
1) 最小二乘及回归 
2) 求两个平面之间的距离 
3) 求方差下界 
4) x带随机损失的线性规划,即把随机损失的平方作为最小化项加入目标函数中 
  二阶锥规划(QCQP): 

minimize fTxsubject to ||Aix+b||2≤cTix+dFx=gminimize fTxsubject to ||Aix+b||2≤ciTx+dFx=g


  该规划可用于常数未知的线性规划,解法1是设置协方差矩阵P表示参数随机的程度,然后把约束条件设为容忍其极大损失;解法2是设置方差服从正态分布,通过0.95或者0.99等置信度确定约束范围。 
这里写图片描述 

\begin{center}
二次规划的几何解释
\end{center}\begin{center}二次规划的几何解释\end{center}


4.5 几何规划 
  单项式函数定义为: 

f(x)=cxa11xa22…xannf(x)=cx1a1x2a2…xnan


多项式函数则定义为多个单项式函数的和: 

f(x)=∑Kk=1ckxa1k1xa2k2…xanknf(x)=∑k=1Kckx1a1kx2a2k…xnank


  其中x为正。定义几何规划为: 

minimize f0(x)subject to fi(x)≤1, i=1,…,mhi(x)=1, i=1,…,pminimize f0(x)subject to fi(x)≤1, i=1,…,mhi(x)=1, i=1,…,p


其中,fifi为多项式函数,hihi为单项式函数。几何规划不是凸函数,但可以转换成凸函数,首先令yi=logxiyi=logxi,然后在fifi外套loglog函数,则该问题的指数均转换为仿射函数。 
4.6 广义不等式约束 
  把约束扩展到广义不等式上,即认为fifi的映射结果是一个向量,因此fifi所在的不等式是一个广义不等式。这里记录一个半定规划: 

minimize cTxsubject to x1F1+x2F2+⋯+xnFn≤GAx=bminimize cTxsubject to x1F1+x2F2+⋯+xnFn≤GAx=b


  可以看出,该问题包含SOCP,而SOCP包含QCQP,QCQP包含LP。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值