总体趋势图

1.alexnet:

优点:
1.使用了relu,并验证在较深的网络中解决了sigmod会产生梯度弥散问题
2.在最后全连接层使用了dropout避免了过拟合
3.使用最大池化,避免平均池化的模糊化效果,并提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠覆盖,提升特征丰富性
4.提出了lrn(归一化)层
2.vggnet(16,19)

优点:用两个3乘3卷积层代替1个5乘5卷积层,特征学习能力更强
总结观点:LRN层作用不大,越深的网络越好,1乘1卷积核也是有效的,但是没有3乘3好,大一些的卷积核可以学习更大空间特征
3.inception(v1,v2,v3,v4)
v1(googlenet):inception module

本文介绍了经典卷积神经网络模型的发展,包括AlexNet的ReLU、dropout和LRN层的应用,VGGNet通过加深网络及1x1卷积增强特征学习,以及Inception系列模型的进化,如Inception V3结合ResNet的特点。
最低0.47元/天 解锁文章
852

被折叠的 条评论
为什么被折叠?



