经典cnn模型汇总(alexnet,vggnet,inception)

本文介绍了经典卷积神经网络模型的发展,包括AlexNet的ReLU、dropout和LRN层的应用,VGGNet通过加深网络及1x1卷积增强特征学习,以及Inception系列模型的进化,如Inception V3结合ResNet的特点。
摘要由CSDN通过智能技术生成

总体趋势图

在这里插入图片描述

1.alexnet:
在这里插入图片描述
优点:
1.使用了relu,并验证在较深的网络中解决了sigmod会产生梯度弥散问题
2.在最后全连接层使用了dropout避免了过拟合
3.使用最大池化,避免平均池化的模糊化效果,并提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠覆盖,提升特征丰富性
4.提出了lrn(归一化)层

2.vggnet(16,19)
在这里插入图片描述
优点:用两个3乘3卷积层代替1个5乘5卷积层,特征学习能力更强
总结观点:LRN层作用不大,越深的网络越好,1乘1卷积核也是有效的,但是没有3乘3好,大一些的卷积核可以学习更大空间特征

3.inception(v1,v2,v3,v4)
v1(googlenet):inception module

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值