《机器学习实战》个人学习记录笔记(七)———朴素贝叶斯

原创 2018年04月16日 12:27:46

第四章 朴素贝叶斯

PS:个人笔记 根据《机器学习实战》这本书,Jack-Cui的博客,以及深度眸的视频进行学习

1 贝叶斯原理与朴素贝叶斯

贝叶斯决策理论的核心思想,即选择具有最高概率的决策。


2 优缺点和适用数据类型

优点:

可以处理小样本情况(样本少,基于频率可以算)

可以处理多分类问题()

缺点:

对于输入数据比较敏感(样本少,则对要求会高,样本间是要求独立的)

数据类型:

标称型数据


3 贝叶斯推断

条件概率公式进行变形,可以得到如下形式:⭐⭐⭐

我们把P(A)称为”先验概率”(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为”后验概率”(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为”可能性函数”(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

这就是贝叶斯推断的含义。我们先预估一个”先验概率”,然后加入实验结果,看这个实验到底是增强还是削弱了”先验概率”,由此得到更接近事实的”后验概率”。

在这里,如果”可能性函数”P(B|A)/P(B)>1,意味着”先验概率”被增强,事件A的发生的可能性变大;如果”可能性函数”=1,意味着B事件无助于判断事件A的可能性;如果”可能性函数”<1,意味着”先验概率”被削弱,事件A的可能性变小。


4 朴素贝叶斯推断

理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。

⭐例子说明:


现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

可得:

根据朴素贝叶斯条件独立性的假设可知,”打喷嚏”和”建筑工人”这两个特征是独立的,因此,上面的等式就变成了

这里可以计算:

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

⭐⭐同样,在编程的时候,如果不需要求出所属类别的具体概率,P(打喷嚏) = 0.5和P(建筑工人) = 0.33的概率是可以不用求的。


5 代码部分

原始数据

"""
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
"""
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

if __name__ == '__main__':
    postingLIst, classVec = loadDataSet()
    for each in postingLIst:
        print(each)
    print(classVec)


数据向量化处理

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],             
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   
    return postingList,classVec

"""
⭐⭐函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
"""
def setOfWords2Vec(vocabList, inputSet):                               #⭐第一个参数是不重复的单词列表,第二个就是原始数据中的词条列表,这一步就是每一个样本向量化
    returnVec = [0] * len(vocabList)                                   #创建一个其中所含元素都为0的向量,len就是不重复单词列表中单词个数,因为要计算每个样本的每个单词个数
    for word in inputSet:                                              #遍历每个词条
        if word in vocabList:                                          #遍历词条中每个单词
            returnVec[vocabList.index(word)] = 1                       #如果单词存在不重复列表中(肯定存在的),则该单词在列表的位置(索引值)+1
        else: print("the word: %s is not in my Vocabulary!" % word)    #数据无错误的肯定存在,防止报错
    return returnVec                                                   #返回文档向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
"""
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表,将原始数组中重复的词删除  这里首先是空集用于储存
    for document in dataSet:                #遍历每一个样本
        vocabSet = vocabSet | set(document) #取并集,重复的单词通过这一步删除
    return list(vocabSet)

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    print('postingList:\n',postingList)
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat = []
    for postinDoc in postingList:           #遍历每一个样本,然后对样本进行向量化
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    print('trainMat:\n', trainMat)

下一步训练贝叶斯分类器

import numpy as np

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],             
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                
    return postingList,classVec

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                  
    for word in inputSet:                                              
        if word in vocabList:                                        
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                 

def createVocabList(dataSet):
    vocabSet = set([])                     
    for document in dataSet:
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                           #计算训练的文档数目;6个样本
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数;就是'特征'的个数,这里是32个
    pAbusive = sum(trainCategory)/float(numTrainDocs)         #文档属于侮辱类的概率,这是'前验概率'0.5
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)    #创建numpy.zeros数组,词条出现数初始化为0,这里就是存储每个样本向量化后的数组,分成两组
    p0Denom = 0.0; p1Denom = 0.0                              #分母初始化为0;0,0
    for i in range(numTrainDocs):                             #遍历每个样本,0,1开始算  ⭐这里是向量化的算法,32个一起算
        if trainCategory[i] == 1:                             #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]                           #非侮辱类下每个单词出现的次数总和
            p1Denom += sum(trainMatrix[i])                    #非侮辱类别下所有单词加总,分母19
        else:                                                 #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]                           #侮辱类下每个单词出现的次数总和
            p0Denom += sum(trainMatrix[i])                    #侮辱类别下所有单词加总,分母24
    p1Vect = p1Num/p1Denom                                    #得出来是一个(1.32)的数组,得出了32个单词条件概率在非侮辱类情况下,
    p0Vect = p0Num/p0Denom                                    #同理,是侮辱类情况下
    return p0Vect,p1Vect,pAbusive                             #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)

  已经训练好分类器,接下来,使用分类器进行分类。

import numpy as np
from functools import reduce

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                
                ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                              
    return postingList,classVec                                                         

def createVocabList(dataSet):
    vocabSet = set([])                     
    for document in dataSet:                
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                 
    for word in inputSet:                                          
        if word in vocabList:                                      
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                 

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                        
    numWords = len(trainMatrix[0])                          
    pAbusive = sum(trainCategory)/float(numTrainDocs)       
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)
    p0Denom = 0.0; p1Denom = 0.0                           
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                          
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                              
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom                                 
    p0Vect = p0Num/p0Denom          
    return p0Vect,p1Vect,pAbusive                      

"""
函数说明:朴素贝叶斯分类器分类函数
Parameters:
    vec2Classify - 待分类的词条数组
    p0Vec - 侮辱类的条件概率数组
    p1Vec -非侮辱类的条件概率数组
    pClass1 - 文档属于侮辱类的概率
Returns:
    0 - 属于非侮辱类
    1 - 属于侮辱类
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1             #每个单词向量化后乘以条件概率
    p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)     #reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates((((1+2)+3)+4)+5)
    print('p0:',p0)
    print('p1:',p1)
    if p1 > p0:
        return 1
    else: 
        return 0

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
    无
Returns:
    无
"""
def testingNB():
    listOPosts,listClasses = loadDataSet()                                  #创建实验样本
    myVocabList = createVocabList(listOPosts)                               #创建词汇表
    trainMat=[]                                                             #向量化后的实验样本
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))             #将实验样本向量化
    p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))        #训练朴素贝叶斯分类器
    testEntry = ['love', 'my', 'dalmation']                                 #测试样本1
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))              #测试样本向量化
    if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类')                                        #执行分类并打印分类结果
    else:
        print(testEntry,'属于非侮辱类')                                       #执行分类并打印分类结果
    testEntry = ['stupid', 'garbage']                                       #测试样本2

    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))              #测试样本向量化
    if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类')                                        #执行分类并打印分类结果
    else:
        print(testEntry,'属于非侮辱类')                                       #执行分类并打印分类结果

if __name__ == '__main__':
    testingNB()


机器学习疯狂入门(2):朴素贝叶斯文本分类

-
  • 1970年01月01日 08:00

《机器学习实战》学习笔记:基于朴素贝叶斯的分类方法

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率。...
  • liyuefeilong
  • liyuefeilong
  • 2015-09-12 00:02:32
  • 4694

《机器学习实战》-朴素贝叶斯笔记

本章内容 使用概率分布进行分类 学习朴素贝叶斯分类器 解析RSS源数据 使用朴素贝叶斯分类器从个人广告中获取区域倾向...
  • mingxinyike22
  • mingxinyike22
  • 2015-06-06 11:08:56
  • 1125

机器学习实战笔记4(朴素贝叶斯)

前面介绍的kNN和决策树都给出了“该数据实例属于哪一类”这类问题的明确答案,而有时候的分类并不能给出明确的答案,本节讲解使用概率论进行分类的方法。 1:简单概念描述 概念比较简单,这里我摘抄自百度百科...
  • Lu597203933
  • Lu597203933
  • 2014-08-08 21:20:37
  • 8308

Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器

朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但...
  • c406495762
  • c406495762
  • 2017-08-17 20:57:59
  • 7749

机器学习实战python版 朴素贝叶斯示例 垃圾邮件分类 从个人广告中获取趋于趋向

首先我们先来看如何使用朴树贝叶斯对电子邮件进行分类 准备数据:切分文本 对于一个文本字符串,使用python的split()就可以切分文本。 >>> mySent = 'this book is...
  • XD_Senior
  • XD_Senior
  • 2015-12-03 20:20:49
  • 1674

机器学习实战4--朴素贝叶斯

分类器在进行分类的时候会给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值。若p1>p2,那么属于类别1,反之属于类别2。 朴素贝叶斯属于贝叶斯决策理论的一部分:贝叶斯准则是计算条件概率的方法...
  • chuhang_zhqr
  • chuhang_zhqr
  • 2016-02-27 15:07:46
  • 1385

机器学习之实战朴素贝叶斯算法

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类,而朴素贝叶斯分类可谓是里面最简单、入门的一种。首先关于贝叶斯定理,感觉简单而伟大,前些天一直在看吴军的数学之美(没看过...
  • on2way
  • on2way
  • 2015-08-05 11:46:26
  • 6692

《机器学习实战》学习笔记---朴素贝叶斯(Bayes)算法

作为一名机器学习小白,将自己的学习经历写下来,一方面为了总结和回顾,另一方面希望能得到各路大神的批评指正,若能给他人带来便利就更好不过了。 算法优缺点: (1)优点:在数据较少的情况下,依然有效,可...
  • weixin_38215395
  • weixin_38215395
  • 2017-04-09 20:53:20
  • 623

《机器学习实战》第四章:朴素贝叶斯(2)两个实例

这一篇是两个朴素贝叶斯的实例。分别是: (1)过滤垃圾邮件 (2)从个人广告中获取区域倾向 ----------------------------------------------------...
  • CharlieLincy
  • CharlieLincy
  • 2017-04-19 20:29:29
  • 773
收藏助手
不良信息举报
您举报文章:《机器学习实战》个人学习记录笔记(七)———朴素贝叶斯
举报原因:
原因补充:

(最多只允许输入30个字)