《机器学习实战》个人学习记录笔记(七)———朴素贝叶斯

第四章 朴素贝叶斯

PS:个人笔记 根据《机器学习实战》这本书,Jack-Cui的博客,以及深度眸的视频进行学习

1 贝叶斯原理与朴素贝叶斯

贝叶斯决策理论的核心思想,即选择具有最高概率的决策。


2 优缺点和适用数据类型

优点:

可以处理小样本情况(样本少,基于频率可以算)

可以处理多分类问题()

缺点:

对于输入数据比较敏感(样本少,则对要求会高,样本间是要求独立的)

数据类型:

标称型数据


3 贝叶斯推断

条件概率公式进行变形,可以得到如下形式:⭐⭐⭐

我们把P(A)称为”先验概率”(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为”后验概率”(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为”可能性函数”(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

这就是贝叶斯推断的含义。我们先预估一个”先验概率”,然后加入实验结果,看这个实验到底是增强还是削弱了”先验概率”,由此得到更接近事实的”后验概率”。

在这里,如果”可能性函数”P(B|A)/P(B)>1,意味着”先验概率”被增强,事件A的发生的可能性变大;如果”可能性函数”=1,意味着B事件无助于判断事件A的可能性;如果”可能性函数”<1,意味着”先验概率”被削弱,事件A的可能性变小。


4 朴素贝叶斯推断

理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。

⭐例子说明:


现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

可得:

根据朴素贝叶斯条件独立性的假设可知,”打喷嚏”和”建筑工人”这两个特征是独立的,因此,上面的等式就变成了

这里可以计算:

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

⭐⭐同样,在编程的时候,如果不需要求出所属类别的具体概率,P(打喷嚏) = 0.5和P(建筑工人) = 0.33的概率是可以不用求的。


5 代码部分

原始数据

"""
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
"""
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   #类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

if __name__ == '__main__':
    postingLIst, classVec = loadDataSet()
    for each in postingLIst:
        print(each)
    print(classVec)


数据向量化处理

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],             
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                   
    return postingList,classVec

"""
⭐⭐函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
"""
def setOfWords2Vec(vocabList, inputSet):                               #⭐第一个参数是不重复的单词列表,第二个就是原始数据中的词条列表,这一步就是每一个样本向量化
    returnVec = [0] * len(vocabList)                                   #创建一个其中所含元素都为0的向量,len就是不重复单词列表中单词个数,因为要计算每个样本的每个单词个数
    for word in inputSet:                                              #遍历每个词条
        if word in vocabList:                                          #遍历词条中每个单词
            returnVec[vocabList.index(word)] = 1                       #如果单词存在不重复列表中(肯定存在的),则该单词在列表的位置(索引值)+1
        else: print("the word: %s is not in my Vocabulary!" % word)    #数据无错误的肯定存在,防止报错
    return returnVec                                                   #返回文档向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
"""
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表,将原始数组中重复的词删除  这里首先是空集用于储存
    for document in dataSet:                #遍历每一个样本
        vocabSet = vocabSet | set(document) #取并集,重复的单词通过这一步删除
    return list(vocabSet)

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    print('postingList:\n',postingList)
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat = []
    for postinDoc in postingList:           #遍历每一个样本,然后对样本进行向量化
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    print('trainMat:\n', trainMat)

下一步训练贝叶斯分类器

import numpy as np

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],             
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                                
    return postingList,classVec

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                  
    for word in inputSet:                                              
        if word in vocabList:                                        
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                 

def createVocabList(dataSet):
    vocabSet = set([])                     
    for document in dataSet:
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                           #计算训练的文档数目;6个样本
    numWords = len(trainMatrix[0])                            #计算每篇文档的词条数;就是'特征'的个数,这里是32个
    pAbusive = sum(trainCategory)/float(numTrainDocs)         #文档属于侮辱类的概率,这是'前验概率'0.5
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)    #创建numpy.zeros数组,词条出现数初始化为0,这里就是存储每个样本向量化后的数组,分成两组
    p0Denom = 0.0; p1Denom = 0.0                              #分母初始化为0;0,0
    for i in range(numTrainDocs):                             #遍历每个样本,0,1开始算  ⭐这里是向量化的算法,32个一起算
        if trainCategory[i] == 1:                             #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]                           #非侮辱类下每个单词出现的次数总和
            p1Denom += sum(trainMatrix[i])                    #非侮辱类别下所有单词加总,分母19
        else:                                                 #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]                           #侮辱类下每个单词出现的次数总和
            p0Denom += sum(trainMatrix[i])                    #侮辱类别下所有单词加总,分母24
    p1Vect = p1Num/p1Denom                                    #得出来是一个(1.32)的数组,得出了32个单词条件概率在非侮辱类情况下,
    p0Vect = p0Num/p0Denom                                    #同理,是侮辱类情况下
    return p0Vect,p1Vect,pAbusive                             #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = []
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)

  已经训练好分类器,接下来,使用分类器进行分类。

import numpy as np
from functools import reduce

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],                
                ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]                                                              
    return postingList,classVec                                                         

def createVocabList(dataSet):
    vocabSet = set([])                     
    for document in dataSet:                
        vocabSet = vocabSet | set(document) 
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                                 
    for word in inputSet:                                          
        if word in vocabList:                                      
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                                 

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                        
    numWords = len(trainMatrix[0])                          
    pAbusive = sum(trainCategory)/float(numTrainDocs)       
    p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)
    p0Denom = 0.0; p1Denom = 0.0                           
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:                          
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:                                              
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom                                 
    p0Vect = p0Num/p0Denom          
    return p0Vect,p1Vect,pAbusive                      

"""
函数说明:朴素贝叶斯分类器分类函数
Parameters:
    vec2Classify - 待分类的词条数组
    p0Vec - 侮辱类的条件概率数组
    p1Vec -非侮辱类的条件概率数组
    pClass1 - 文档属于侮辱类的概率
Returns:
    0 - 属于非侮辱类
    1 - 属于侮辱类
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1             #每个单词向量化后乘以条件概率
    p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)     #reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates((((1+2)+3)+4)+5)
    print('p0:',p0)
    print('p1:',p1)
    if p1 > p0:
        return 1
    else: 
        return 0

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
    无
Returns:
    无
"""
def testingNB():
    listOPosts,listClasses = loadDataSet()                                  #创建实验样本
    myVocabList = createVocabList(listOPosts)                               #创建词汇表
    trainMat=[]                                                             #向量化后的实验样本
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))             #将实验样本向量化
    p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))        #训练朴素贝叶斯分类器
    testEntry = ['love', 'my', 'dalmation']                                 #测试样本1
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))              #测试样本向量化
    if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类')                                        #执行分类并打印分类结果
    else:
        print(testEntry,'属于非侮辱类')                                       #执行分类并打印分类结果
    testEntry = ['stupid', 'garbage']                                       #测试样本2

    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))              #测试样本向量化
    if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类')                                        #执行分类并打印分类结果
    else:
        print(testEntry,'属于非侮辱类')                                       #执行分类并打印分类结果

if __name__ == '__main__':
    testingNB()


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页