zookeeper之故障恢复

一、zookeeper之数据结构Znode

Znode包含了数据,子节点引用,访问权限等。如图:
在这里插入图片描述
data:
Znode存储的数据信息。
ACL:
记录Znode的访问权限,即哪些人或哪些IP可以访问本节点。
stat:
包含Znode的各种元数据,比如事务ID,版本号,时间戳,大小等。
child:
当前节点的子节点引用,类似于二叉树的左右孩子。

需要注意的是:zookeeper是为读多写少的场景设计的,Znode并不是用来存储大规模业务数据,而是用于存储少量的状态和配置信息,每个节点的数据最大不能超过1MB。

如何操作这些节点?zookeeper提供了简单的API以及触发器机制。

二、zookeeper的基本操作与事件通知

常用的API:

  • create:创建节点
  • delete:删除节点
  • exists:判断节点是否存在
  • getData:获取一个节点的数据
  • setData:设置一个节点的数据
  • getChildren:获取节点下的所有子节点。

这其中,exists,getData,getChildren属于读操作。Zookeeper客户端在请求读操作的时候,可以选择是否设置Watch。

watch是什么意思?
是注册在特点Znode上的触发器,当这个Znode发生改变,也就调用了create,delete,setData时,将会触发Znode上注册的对应事件,请求的Watch的客户端会接收到 <异步通知>

具体交互过程:
1.客户端调用getData方法,watch参数是true。服务端接到请求,返回节点数据,并且在对应的哈希表里插入被Watch的Znode路径,以及Watcher列表。
在这里插入图片描述
2.当被Watch的Znode已删除,服务端会查找哈希表,找到该Znode对应的所有Watcher,异步通知客户端,并且删除哈希表中对应的Key-Value。
在这里插入图片描述

三、zookeeper的一致性

zookeeper作为注册中心,通常将维护一个集群:
在这里插入图片描述
zookeeper集群是一主多从结构。
在更新数据时,首先更新到主节点(这里的节点指的是服务器,不是Znode),再同步到从节点。
在读取数据时,直接读取任意从节点的数据。

为了保证主从节点的数据一致性,zookeeper采用了ZAB协议,类似于一致性算法Paxos和Raft。

关于ZAB协议:
ZAB即zookeeper Atomic Broadcast,用于解决zookeeper集群崩溃恢复,以及主从同步数据的问题。
ZAB协议所定义的三种节点状态:
Looking:选举状态。
Following:从节点所处的状态。
Leading:主节点所处的状态。

最大ZXID的概念:
最大ZXID也就是节点本地的最新事务编号,包含epoch和计数两部分。

假如zookeeper当前的主节点挂了,集群会进行崩溃恢复,ZAB的恢复分为三个阶段:

1、Leader election:选举阶段,此时集群的节点都处于Looking状态,他们会各自向其他节点发起投票,投票当中包含自己的服务器ID和最新的事务ZXID。
在这里插入图片描述
接下来,节点会用自身的ZXID和从其他节点接收到的ZXID比较,如果发现别人的ZXID比自己大,也就是数据比自己新,那么就重新发起投票,把票投给目前已知最大的ZXID所属节点。
在这里插入图片描述
每次投票后,服务器都会统计投票数量,判断是否有某个节点得到半数以上的投票。如果存在这样的节点,该节点将会成为准Leader,状态变为Leading。其他节点的状态变为Following。
在这里插入图片描述
2、Discovery:发现阶段,用于在从节点中发现最新的ZXID和事务日志。
或许有人会问:既然Leader被选为主节点,已经是集群里数据最新的了,为什么还要从节点中寻找最新事务呢?
这是为了防止某些意外情况,比如因网络原因在上一阶段产生多个Leader的情况。

所以这一阶段,Leader集思广益,接收所有Follower发来各自的最新epoch值。Leader从中选出最大的epoch,基于此值加1,生成新的epoch分发给各个Follower。

各个Follower收到全新的epoch后,返回ACK给Leader,带上各自最大的ZXID和历史事务日志。Leader选出最大的ZXID,并更新自身历史日志。

3、Synchronization:同步阶段,把Leader刚才收集得到的最新历史事务日志,同步给集群中的所有Follower。只有当半数Follower同步成功,这个准Leader才能真正成为Leader。

自此,故障恢复正式完成。

ZAB协议下,写入数据的实现:
写入数据,涉及到ZAB协议的Broadcast阶段。

什么是Broadcast呢? 简单来说,就是Zookeeper常规情况下更新数据的时候,由Leader广播到所有的Follower。 其过程如下:
1.客户端发出写入数据请求给任意Follower。

2.Follower把写入数据请求转发给Leader。

3.Leader采用二阶段提交方式,先发送Propose广播给Follower。

4.Follower接到Propose消息,写入日志成功后,返回ACK消息给Leader。

5.Leader接到半数以上ACK消息,返回成功给客户端,并且广播Commit请求给Follower。

在这里插入图片描述
简单点说,从节点接收写数据的请求,转发给Leader,Leader先返回一个写入计划给follower,然后接收到半数以上follower的应答,返回成功给客户端,并广播提交给follower,让他们把之前那个写入计划执行一下,这样就达到了数据同步。

ZAB协议既不是强一致性,也不是弱一致性,而是 处于两者之间的单调一致性。它依靠事务ID和版本号,保证了数据的更新和读取是有序的。

四、zookeeper的应用

1.分布式锁

这是雅虎研究员设计Zookeeper的初衷。利用Zookeeper的临时顺序节点,可以轻松实现分布式锁。

2.服务注册和发现

利用Znode和Watcher,可以实现分布式服务的注册和发现。最著名的应用就是阿里的分布式RPC框架Dubbo。

3.共享配置和状态信息

Redis的分布式解决方案Codis,就利用了Zookeeper来存放数据路由表和 codis-proxy 节点的元信息。同时 codis-config 发起的命令都会通过 ZooKeeper 同步到各个存活的 codis-proxy。

此外,Kafka、HBase、Hadoop,也都依靠Zookeeper同步节点信息,实现高可用。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页