线性代数之 向量的内积,外积,长度,正交与正交矩阵

线性代数之 向量的内积,外积,长度,正交和正交矩阵

向量的内积

对于列向量 a , b ∈ R n a,b\in R^n a,bRn,其内积(点积)表示为:
a ⋅ b = a T b = b T a = ∑ i = 1 n a i b i a \cdot b = a^Tb=b^Ta=\sum_{i=1}^n a_ib_i ab=aTb=bTa=i=1naibi

向量的外积

这里仅讨论三维向量空间中的外积。

对于列向量 a , b ∈ R 3 a,b\in R^3 a,bR3,其外积(叉积)表示为:
a × b = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] b = a ∧ b a ∧ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] a \times b= \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 &b_3 \\ \end{vmatrix} \\ = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 &0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{bmatrix}b =a{^\land}b \\ \quad \\ a^\land = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 &0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{bmatrix} a×b=ia1b1ja2b2ka3b3=0a3a2a30a1a2a10b=aba=0a3a2a30a1a2a10
a ∧ a^\land a称为向量 a a a对应的反对称矩阵。

向量的长度

将向量 a a a的2-范数称为其长度:
∣ a ∣ = ∥ a ∥ 2 = ∑ i = 1 n a i 2 = a ⋅ a = a T a |a| = \Vert a \Vert_2 =\sqrt{\sum_{i=1}^n a_i^2}=\sqrt {a\cdot a}=\sqrt {a^Ta} a=a2=i=1nai2 =aa =aTa
长度为1的向量是单位向量。

向量正交

如果向量 a , b a,b a,b
a ⋅ b = 0 a \cdot b=0 ab=0
则称向量 a , b a,b a,b正交。

如果向量组 S = { v ⃗ 1 , v ⃗ 2 , … , v ⃗ n } S=\{\vec v_1,\vec v_2,\dots,\vec v_n\} S={v 1,v 2,,v n}中任意两个不同的向量都正交,则称为正交向量组。

如果正交向量组 S S S是由非零向量构成的,则 S S S是一个线性无关向量组。

证明:
假 设 一 组 非 全 零 系 数 k 1 , k 2 , … , k n 满 足 线 性 相 关 k 1 v ⃗ 1 + k 2 v ⃗ 2 + ⋯ + k n v ⃗ n = 0 ⃗ v ⃗ 1 ⋅ ( k 1 v ⃗ 1 + k 2 v ⃗ 2 + ⋯ + k n v ⃗ n ) = 0 k 1 v ⃗ 1 ⋅ v ⃗ 1 = 0 k 1 = 0 同 理 , k 1 , k 2 , … , k n = 0 因 此 v ⃗ 1 , v ⃗ 2 , … , v ⃗ n 线 性 无 关 。 假设一组非全零系数k_1,k_2,\dots ,k_n满足线性相关 \\ \quad \\ k_1\vec v_1+k_2\vec v_2 + \dots+k_n\vec v_n=\vec0 \\ \vec v_1\cdot(k_1\vec v_1+k_2\vec v_2 + \dots+k_n\vec v_n)=0 \\ k_1\vec v_1 \cdot \vec v_1=0 \\ k_1=0 \\ \quad \\ 同理,k_1,k_2,\dots ,k_n=0 \\ 因此\vec v_1,\vec v_2,\dots,\vec v_n线性无关。 k1,k2,,kn线k1v 1+k2v 2++knv n=0 v 1(k1v 1+k2v 2++knv n)=0k1v 1v 1=0k1=0k1,k2,,kn=0v 1,v 2,,v n线
推论:非零正交向量组 S S S S S S生成的向量空间的一个正交基。

定义:如果非零正交向量组 S S S是由单位向量构成的,则称 S S S S S S生成的向量空间的单位正交基。

正交矩阵

定义:n阶方阵 A ∈ R n × n A\in R^{n\times n} ARn×n如果满足 A A T = E AA^T=E AAT=E,则称 A A A是正交矩阵。

性质0: A A A是正交矩阵,则 A A A可逆,并且行列式值为1或-1。
证明:
∣ A A T ∣ = ∣ A ∣ 2 = 1 , ∣ A ∣ = ± 1 |AA^T|=|A|^2=1,|A|=\pm 1 AAT=A2=1,A=±1

性质1: A A A是正交矩阵,则 A T A^T AT也是正交矩阵。
证明:
A A T = E , A T = A − 1 , A T A = E AA^T=E,A^T=A^{-1},A^TA=E AAT=E,AT=A1,ATA=E

性质2: A A A是正交矩阵,则 A A A的列(行)向量组是单位正向量交组。
证明:
A = ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) A T A = ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) T ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) = [ a ⃗ 1 T a ⃗ 1 a ⃗ 1 T a ⃗ 2 … a ⃗ 1 T a ⃗ n a ⃗ 2 T a ⃗ 1 a ⃗ 2 T a ⃗ 2 … a ⃗ 2 T a ⃗ n … … … … a ⃗ n T a ⃗ 1 a ⃗ n T a ⃗ 2 … a ⃗ n T a ⃗ n ] = E a ⃗ i T a ⃗ i = 1 , a ⃗ i T a ⃗ j = 0 , i ≠ j A=(\vec a_1, \vec a_2,\dots ,\vec a_n) \\ A^TA=(\vec a_1, \vec a_2,\dots ,\vec a_n)^T (\vec a_1, \vec a_2,\dots ,\vec a_n) \\ =\begin{bmatrix} \vec a_1^T\vec a_1 & \vec a_1^T\vec a_2 & \dots &\vec a_1^T\vec a_n \\ \vec a_2^T\vec a_1 & \vec a_2^T\vec a_2 & \dots &\vec a_2^T\vec a_n \\ \dots & \dots & \dots & \dots \\ \vec a_n^T\vec a_1 & \vec a_n^T\vec a_2 & \dots &\vec a_n^T\vec a_n \\ \end{bmatrix} = E \\ \quad \\ \vec a_i^T\vec a_i=1, \vec a_i^T\vec a_j=0,i\ne j A=(a 1,a 2,,a n)ATA=(a 1,a 2,,a n)T(a 1,a 2,,a n)=a 1Ta 1a 2Ta 1a nTa 1a 1Ta 2a 2Ta 2a nTa 2a 1Ta na 2Ta na nTa n=Ea iTa i=1,a iTa j=0,i=j
注: A A A是正交矩阵, A A A的列(行)向量组是单位正交组,是一对充分必要条件。

正交矩阵的扩展

对于矩阵 A ∈ R m × n , A T A = E A\in R^{m\times n},A^TA=E ARm×nATA=E的充分必要条件是 A A A的列向量是单位正交组。证明与上面一模一样。

性质: A ∈ R m × n , A T A = E , x , y ∈ R n A\in R^{m\times n},A^TA=E, x,y\in R^n ARm×n,ATA=E,x,yRn,则
( A x ) ⋅ ( A y ) = x ⋅ y ∥ A x ∥ = ∥ x ∥ (Ax)\cdot (Ay)=x\cdot y \\ \Vert Ax \Vert=\Vert x \Vert (Ax)(Ay)=xyAx=x
表明具有单位正交列向量组的矩阵 A A A,其线性变换 A x Ax Ax能够保持 x x x的长度和正交性。

证明:
( A x ) ⋅ ( A y ) = x T A T A y = x T y = x ⋅ y ∥ A x ∥ = ( A x ) ⋅ ( A x ) = x T x = ∥ x ∥ (Ax)\cdot (Ay)=x^TA^TAy=x^Ty=x\cdot y \\ \Vert Ax \Vert = \sqrt{(Ax)\cdot (Ax)}= \sqrt{x^Tx}=\Vert x \Vert (Ax)(Ay)=xTATAy=xTy=xyAx=(Ax)(Ax) =xTx =x

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

RuiH.AI

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值