47 篇文章 3 订阅

# 向量的内积

a ⋅ b = a T b = b T a = ∑ i = 1 n a i b i a \cdot b = a^Tb=b^Ta=\sum_{i=1}^n a_ib_i

# 向量的外积

a × b = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] b = a ∧ b a ∧ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] a \times b= \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 &b_3 \\ \end{vmatrix} \\ = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 &0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{bmatrix}b =a{^\land}b \\ \quad \\ a^\land = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 &0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{bmatrix}
a ∧ a^\land 称为向量 a a 对应的反对称矩阵。

# 向量的长度

∣ a ∣ = ∥ a ∥ 2 = ∑ i = 1 n a i 2 = a ⋅ a = a T a |a| = \Vert a \Vert_2 =\sqrt{\sum_{i=1}^n a_i^2}=\sqrt {a\cdot a}=\sqrt {a^Ta}

# 向量正交

a ⋅ b = 0 a \cdot b=0

# 正交矩阵

∣ A A T ∣ = ∣ A ∣ 2 = 1 , ∣ A ∣ = ± 1 |AA^T|=|A|^2=1,|A|=\pm 1

A A T = E , A T = A − 1 , A T A = E AA^T=E,A^T=A^{-1},A^TA=E

A = ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) A T A = ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) T ( a ⃗ 1 , a ⃗ 2 , … , a ⃗ n ) = [ a ⃗ 1 T a ⃗ 1 a ⃗ 1 T a ⃗ 2 … a ⃗ 1 T a ⃗ n a ⃗ 2 T a ⃗ 1 a ⃗ 2 T a ⃗ 2 … a ⃗ 2 T a ⃗ n … … … … a ⃗ n T a ⃗ 1 a ⃗ n T a ⃗ 2 … a ⃗ n T a ⃗ n ] = E a ⃗ i T a ⃗ i = 1 , a ⃗ i T a ⃗ j = 0 , i ≠ j A=(\vec a_1, \vec a_2,\dots ,\vec a_n) \\ A^TA=(\vec a_1, \vec a_2,\dots ,\vec a_n)^T (\vec a_1, \vec a_2,\dots ,\vec a_n) \\ =\begin{bmatrix} \vec a_1^T\vec a_1 & \vec a_1^T\vec a_2 & \dots &\vec a_1^T\vec a_n \\ \vec a_2^T\vec a_1 & \vec a_2^T\vec a_2 & \dots &\vec a_2^T\vec a_n \\ \dots & \dots & \dots & \dots \\ \vec a_n^T\vec a_1 & \vec a_n^T\vec a_2 & \dots &\vec a_n^T\vec a_n \\ \end{bmatrix} = E \\ \quad \\ \vec a_i^T\vec a_i=1, \vec a_i^T\vec a_j=0,i\ne j

# 正交矩阵的扩展

( A x ) ⋅ ( A y ) = x ⋅ y ∥ A x ∥ = ∥ x ∥ (Ax)\cdot (Ay)=x\cdot y \\ \Vert Ax \Vert=\Vert x \Vert

( A x ) ⋅ ( A y ) = x T A T A y = x T y = x ⋅ y ∥ A x ∥ = ( A x ) ⋅ ( A x ) = x T x = ∥ x ∥ (Ax)\cdot (Ay)=x^TA^TAy=x^Ty=x\cdot y \\ \Vert Ax \Vert = \sqrt{(Ax)\cdot (Ax)}= \sqrt{x^Tx}=\Vert x \Vert

12-26 4889

10-29 2029
03-29 1119
08-17 2万+
05-28 3093
09-09 354
08-23 3530
06-04 1280
07-30 3953
05-09 2270
08-26 3539
04-06 661
11-21 9489
08-26 1305
04-29 499

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

RuiH.AI

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。