LRU算法

LeetCode 地址 LRU 缓存机制

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:

  • LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

输入

["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]

输出

[null, null, null, 1, null, -1, null, -1, 3, 4]

解释

LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 3000
  • 0 <= value <= 104
  • 最多调用 3 * 104 次 get 和 put

解题:

package linkedList;

import java.util.HashMap;
import java.util.Map;

/**
 * https://leetcode-cn.com/problems/lru-cache/solution/lruhuan-cun-ji-zhi-by-leetcode-solution/
 *
 */
public class LRUCache {
    class Entry {
        int key;
        int value;
        Entry prev;
        Entry next;
        public Entry() {}
        public Entry(int key, int value) {
            this.key = key;
            this.value = value;}
    }

    private Map<Integer, Entry> cache = new HashMap<>();
    private int size;
    private int capacity;
    /*
     在双向链表的实现中,使用一个伪头部和伪尾部标记界限,这样在添加节点和删除节点的时候就不需要检查相邻的节点是否存在。
     */
    // 双向链表头结点,最近有访问
    private Entry head;
    // 双向链表尾结点,最久没访问
    private Entry tail;

    public LRUCache(int capacity) {
        this.size = 0;
        this.capacity = capacity;
        // 使用伪头部和伪尾部节点
        head = new Entry();
        tail = new Entry();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        Entry node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 如果 key 存在,先通过哈希表定位,再移到头部
        moveToHead(node);
        return node.value;
    }

    public void put(int key, int value) {
        Entry node = cache.get(key);
        if (node == null) {
            // 如果 key 不存在,创建一个新的节点
            Entry newNode = new Entry(key, value);
            // 添加进哈希表
            cache.put(key, newNode);
            // 添加至双向链表的头部
            addToHead(newNode);
            ++size;
            if (size > capacity) {
                // 如果超出容量,删除双向链表的尾部节点
                Entry tail = removeTail();
                // 删除哈希表中对应的项
                cache.remove(tail.key);
                --size;
            }
        }
        else {
            // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            node.value = value;
            moveToHead(node);
        }
    }

    private void addToHead(Entry node) {
        node.prev = head;
        node.next = head.next;
        head.next.prev = node;
        head.next = node;
    }

    private void removeNode(Entry node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    /**
     *  和{@link #addToHead(Entry node)}的区别是,#moveToHead(Entry node) 是移动已存在在链表中的节点,所以需要把原位置节点移除
     */
    private void moveToHead(Entry node) {
        removeNode(node);
        addToHead(node);
    }

    private Entry removeTail() {
        Entry res = tail.prev;
        removeNode(res);
        return res;
    }
}

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页