ConcurrentHashMap 源码解析和设计思路
当我们碰到线程不安全场景下,需要使用 Map 的时候,我们第一个想到的 API 估计就是 ConcurrentHashMap,ConcurrentHashMap 内部封装了锁和各种数据结构来保证访问 Map 是线程安全的,接下来我们一一来看下,和 HashMap 相比,多了哪些数据结构,又是如何保证线程安全的。
类注释
我们从类注释上可以得到如下信息:
- 所有的操作都是线程安全的,我们在使用时,无需再加锁
- 多个线程同时进行 put、remove 等操作时并不会阻塞,可以同时进行,和 HashTable 不同,HashTable 在操作时,会锁住整个 Map。
- 迭代过程中,即使 Map 结构被修改,也不会抛出 ConcurrentModificationException
- 除了数组 + 链表 + 红黑树的基本结构外,新增了转移节点,是为了保证扩容时的线程安全的节点
- 提供了很多 Stream 流式方法,比如 forEach、search、reduce 等等
从类注释中,我们可以看出 ConcurrentHashMap 和 HashMap 相比,新增了转移节点的数据结构,至于底层如何实现线程安全,转移节点的具体细节,接下来我们细看源码。
结构
虽然 ConcurrentHashMap 的底层数据结构,和方法的实现细节和 HashMap 大体一致,但两者在类结构上却没有任何关联,我们看下 ConcurrentHashMap 的类图:

看 ConcurrentHashMap 源码,我们会发现很多方法和代码和 HashMap 很相似,有的同学可能会问,为什么不继承 HashMap 呢?继承的确是个好办法,但尴尬的是,ConcurrentHashMap 都是在方法中间进行一些加锁操作,也就是说加锁把方法切割了,继承就很难解决这个问题。
ConcurrentHashMap 和 HashMap 两者的相同之处:
- 数组、链表结构几乎相同,所以底层对数据结构的操作思路是相同的(只是思路相同,底层实现不同);
- 都实现了 Map 接口,继承了 AbstractMap 抽象类,所以大多数的方法也都是相同的,HashMap 有的方法,ConcurrentHashMap 几乎都有,所以当我们需要从 HashMap 切换到 ConcurrentHashMap 时,无需关心两者之间的兼容问题。
不同之处:
- 红黑树结构略有不同,HashMap 的红黑树中的节点叫做 TreeNode,TreeNode 不仅仅有属性,还维护着红黑树的结构,比如说查找,新增等等;ConcurrentHashMap 中红黑树被拆分成两块,TreeNode 仅仅维护的属性和查找功能,新增了 TreeBin,来维护红黑树结构,并负责根节点的加锁和解锁;
- 新增 ForwardingNode (转移)节点,扩容的时候会使用到,通过使用该节点,来保证扩容时的线程安全。
JDK 1.8 中,ConcurrentHashMap 的 Node 节点中 value 和 next 都用 volatile 修饰,保证并发的可见性
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next;
...
}
put
ConcurrentHashMap 在 put 方法上的整体思路和 HashMap 相同,但在线程安全方面写了很多保障的代码:
-
如果数组为空,初始化
-
计算当前数组位置有没有值
- 没有值的话,CAS(compare and swap 比较交换),失败继续自旋直到成功
- 有值的话
- 如果它是转移节点(正在扩容),就会一直自旋等待扩容完成之后再新增
- 如果不是转移节点,先锁定当前位置,保证其余线程不能操作,如果是链表,新增值到链表的尾部,如果是红黑树,使用红黑树新增的方法新增
-
新增完成之后 check 需不需要扩容,需要的话去扩容
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
// 自旋
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// table 是空的,进行初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
// 如果当前索引位置没有值,直接初始化一个新节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// cas在i位置创建新的元素,当i位置是空时,即能创建成功,结束自旋,否则继续自旋
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果当前节点是转移节点,说明该节点正在扩容需要等待扩容完成
// 转移节点的hash值是固定的,都是-1
else if ((fh = f.hash) == MOVED)
// 扩容
tab = helpTransfer(tab, f);
// 节点上有值的
else {
V oldVal = null;
// 锁定当前节点,其他线程不能操作,保证了安全
synchronized (f) {
// 这里再次判断i位置的数据没有被修改 使用Unsafe类volatile的操作查看值
if (tabAt(tab, i) == f) {
// 链表
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 元素存在的话,判断是否直接修改
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 把新增的元素赋值到链表的最后,退出自旋
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树,这里没有使用TreeNode,使用的是TreeBin,TreeNode只是红黑树的一个节点
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
//满足if的话,把老的值给oldVal
//在putTreeVal方法里面,在给红黑树重新着色旋转的时候
//会锁住红黑树的根节点
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//binCount不为空,并且 oldVal有值的情况,说明已经新增成功了
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
//这一步几乎走不到。槽点已经上锁,只有在红黑树或者链表新增失败的时候
//才会走到这里,这两者新增都是自旋的,几乎不会失败
break;
}
}
}
//check 容器是否需要扩容,如果需要去扩容,调用 transfer 方法去扩容
addCount(1L, binCount);
return null;
}
值得关注的是tabAt(tab, i)方法,其使用Unsafe类volatile的操作volatile式地查看值,保证每次获取到的值都是最新的:
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
虽然上面的table变量加了volatile,但也只能保证其引用的可见性,并不能确保其数组中的对象是否是最新的,所以需要Unsafe类volatile式地拿到最新的Node
源码中都有非常详细的注释,就不解释了,我们重点说一下,ConcurrentHashMap 在 put 过程中,采用了哪些手段来保证线程安全。
数组初始化时的线程安全
数组初始化时,首先通过自旋来保证一定可以初始化成功,然后 CAS 设置 SIZECTL,来保证同一时刻只能有一个线程对数组进行初始化,CAS 成功后,还会再次判断当前数组是否已经初始化完成,如果已经初始化完成,就不会再次初始化,通过自旋 + CAS + 双重检查等手段保证了数组初始化时的线程安全,源码如下:
// 初始化 table,通过对 sizeCtl 的变量赋值来保证数组只能被初始化一次
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
// 通过自旋保证初始化成功
while ((tab = table) == null || tab.length == 0) {
// 小于0代表有线程正在初始化,释放当前CPU的调度权,自旋
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// CAS赋值保证当前只有一个线程正在初始化,-1代表当前只有一个线程能够初始化,保证了数组初始化的安全性
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
// 很有可能执行到这里的时候,table已经不为空了,双重check
if ((tab = table) == null || tab.length == 0) {
// 进行初始化
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
新增槽点值时的线程安全
此时为了保证线程安全,做了四处优化:
-
通过自旋死循环保证一定可以新增成功
在新增之前,通过
for (Node<K,V>[] tab = table;;)这样的死循环来保证新增一定可以成功,一旦新增成功,就可以退出当前死循环,新增失败的话,会自旋直到新增成功。 -
当前槽点为空时,通过 CAS 新增
casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null))Java 这里的写法非常严谨,没有在判断槽点为空的情况下直接赋值,因为在判断槽点为空和赋值的瞬间,很有可能槽点已经被其他线程赋值了,所以我们采用 CAS 算法,能够保证槽点为空的情况下赋值成功,如果恰好槽点已经被其他线程赋值,当前 CAS 操作失败,会再次执行 for 自旋,再走槽点有值的 put 流程,这里就是自旋 + CAS 的结合。
-
当前槽点有值时,锁住当前槽点
put 时,如果当前槽点有值,就是 key 的 hash 冲突的情况,此时槽点上可能是链表或红黑树,我们通过锁住槽点,来保证同一时刻只会有一个线程能对槽点进行修改。
Node<K,V> f; int n, i, fh; // 槽点没值 if (tab == null || (n = tab.length) == 0) ... break; } // 正在扩容 else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; // 只对头节点加锁 synchronized (f) { ...... } } -
红黑树旋转时,锁住红黑树的根节点,保证同一时刻,当前红黑树只能被一个线程旋转
lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); }
通过以上 4 点,保证了在各种情况下的新增(不考虑扩容的情况下),都是线程安全的,通过自旋 + CAS + 锁三大姿势,实现的很巧妙,值得我们借鉴。
扩容时的线程安全
ConcurrentHashMap 的扩容时机和 HashMap 相同,都是在 put 方法的最后一步检查是否需要扩容。但两者扩容的过程完全不同,ConcurrentHashMap 扩容的方法叫做 transfer,从 put 方法的 addCount 方法进去。transfer 方法的主要思路是:
- 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队列开始拷贝;
- 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷贝到新数组时,把原数组槽点赋值为转移节点;
- 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直等待,所以在扩容完成之前,该槽点对应的数据是不会发生变化的;
- 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移节点;
- 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷贝完成。
// 扩容主要分2步,第一新建新的空数组,第二移动拷贝每个元素到新数组中去
// tab:原数组,nextTab:新数组
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 如果新数组为空,初始化,大小为原来的2倍,n<<1
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
// 新数组的长度
int nextn = nextTab.length;
// 代表转移节点,说明该节点正在被扩容
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
// 自旋,i的值会从原数组的最大值开始,递减到0
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
// 结束循环的标志
if (--i >= bound || finishing)
advance = false;
// 已经拷贝完成
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 每次减少i的值
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
// 说明拷贝结束了
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 拷贝结束,直接赋值,因为每次拷贝完一个节点,都在原数组上放转移节点,所以拷贝完成的节点的数据一定不会再发生变化。
// 原数组发现是转移节点,是不会操作的,会一直等待转移节点消失之后在进行操作。
// 也就是说数组节点一旦被标记为转移节点,是不会再发生任何变动的,所以不会有任何线程安全的问题
// 所以此处直接赋值,没有任何问题。
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
// 进行节点的拷贝
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
// 如果节点只有单个数据,直接拷贝,如果是链表,循环多次组成链表拷贝
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 在新数组位置上放置拷贝的值
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
// 在老数组位置上放上 ForwardingNode 节点
// put 时,发现是 ForwardingNode 节点,就不会再动这个节点的数据了
setTabAt(tab, i, fwd);
advance = true;
}
// 红黑树的拷贝
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
扩容的关键点,就是如何保证线程安全的,小结有如下几点:
- 拷贝槽点时,会把原数组的槽点锁住
- 拷贝成功后,会把原数组的槽点设置成转移节点,这样如果有数据要 put 到该节点时,发现该槽点是转移节点,会一直等待,知道扩容成功后,才能继续 put,具体可以看 put 方法中的
helpTransfer方法 - 从尾到头进行拷贝,拷贝成功后直接把原数组的槽点设置为转移节点
- 等扩容拷贝都完成之后,直接把新数组的值赋值给数组容器,之前等待 put 的数据才能继续 put
扩容方法还是很有意思的,通过在原数组上设置转移节点,put 时碰到转移节点时会等待扩容成功之后才能 put 的策略,来保证了整个扩容过程中肯定是线程安全的,因为数组的槽点一旦被设置成转移节点,在没有扩容完成之前,是无法进行操作的。
get
ConcurrentHashMap 读的话,就比较简单,先获取数组的下标,然后通过判断数组下标的 key 是否和我们的 key 相等,相等的话直接返回,如果下标的槽点时链表或红黑树的话,分别调用对应的查找数据的方法,整体的思路和 HashMap 很像,源码如下:
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算hashcode
int h = spread(key.hashCode());
// 不是空的数组并且当前索引的槽点数据不是空的,否则返回null
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 槽点第一个值和key相等 直接返回
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 如果是红黑树或者转移节点,使用对应的find方法
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 如果是链表,遍历查找
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
ConcurrentHashMap 和 Hashtable 的区别
ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。
-
底层数据结构: JDK1.7 的
ConcurrentHashMap底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; -
实现线程安全的方式(重要):
① 在 JDK1.7 的时候,
ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。 到了 JDK1.8 的时候已经摒弃了
Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用synchronized和 CAS 来操作。(JDK1.6 以后 对synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的HashMap,虽然在 JDK1.8 中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本;②
Hashtable(同一把锁) :使用synchronized来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。
2034

被折叠的 条评论
为什么被折叠?



