ConcurrentHashMap 源码解析和设计思路

ConcurrentHashMap 源码解析和设计思路

当我们碰到线程不安全场景下,需要使用 Map 的时候,我们第一个想到的 API 估计就是 ConcurrentHashMap,ConcurrentHashMap 内部封装了锁和各种数据结构来保证访问 Map 是线程安全的,接下来我们一一来看下,和 HashMap 相比,多了哪些数据结构,又是如何保证线程安全的。

类注释

我们从类注释上可以得到如下信息:

  1. 所有的操作都是线程安全的,我们在使用时,无需再加锁
  2. 多个线程同时进行 put、remove 等操作时并不会阻塞,可以同时进行,和 HashTable 不同,HashTable 在操作时,会锁住整个 Map。
  3. 迭代过程中,即使 Map 结构被修改,也不会抛出 ConcurrentModificationException
  4. 除了数组 + 链表 + 红黑树的基本结构外,新增了转移节点,是为了保证扩容时的线程安全的节点
  5. 提供了很多 Stream 流式方法,比如 forEach、search、reduce 等等

从类注释中,我们可以看出 ConcurrentHashMap 和 HashMap 相比,新增了转移节点的数据结构,至于底层如何实现线程安全,转移节点的具体细节,接下来我们细看源码。

结构

虽然 ConcurrentHashMap 的底层数据结构,和方法的实现细节和 HashMap 大体一致,但两者在类结构上却没有任何关联,我们看下 ConcurrentHashMap 的类图:

在这里插入图片描述

看 ConcurrentHashMap 源码,我们会发现很多方法和代码和 HashMap 很相似,有的同学可能会问,为什么不继承 HashMap 呢?继承的确是个好办法,但尴尬的是,ConcurrentHashMap 都是在方法中间进行一些加锁操作,也就是说加锁把方法切割了,继承就很难解决这个问题。

ConcurrentHashMap 和 HashMap 两者的相同之处

  1. 数组、链表结构几乎相同,所以底层对数据结构的操作思路是相同的(只是思路相同,底层实现不同);
  2. 都实现了 Map 接口,继承了 AbstractMap 抽象类,所以大多数的方法也都是相同的,HashMap 有的方法,ConcurrentHashMap 几乎都有,所以当我们需要从 HashMap 切换到 ConcurrentHashMap 时,无需关心两者之间的兼容问题。

不同之处

  1. 红黑树结构略有不同,HashMap 的红黑树中的节点叫做 TreeNode,TreeNode 不仅仅有属性,还维护着红黑树的结构,比如说查找,新增等等;ConcurrentHashMap 中红黑树被拆分成两块,TreeNode 仅仅维护的属性和查找功能,新增了 TreeBin,来维护红黑树结构,并负责根节点的加锁和解锁;
  2. 新增 ForwardingNode (转移)节点,扩容的时候会使用到,通过使用该节点,来保证扩容时的线程安全。

JDK 1.8 中,ConcurrentHashMap 的 Node 节点中 value 和 next 都用 volatile 修饰,保证并发的可见性

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    ...
}

put

ConcurrentHashMap 在 put 方法上的整体思路和 HashMap 相同,但在线程安全方面写了很多保障的代码:

  1. 如果数组为空,初始化

  2. 计算当前数组位置有没有值

    • 没有值的话,CAS(compare and swap 比较交换),失败继续自旋直到成功
    • 有值的话
      • 如果它是转移节点(正在扩容),就会一直自旋等待扩容完成之后再新增
      • 如果不是转移节点,先锁定当前位置,保证其余线程不能操作,如果是链表,新增值到链表的尾部,如果是红黑树,使用红黑树新增的方法新增
  3. 新增完成之后 check 需不需要扩容,需要的话去扩容

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    // 自旋
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // table 是空的,进行初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        // 如果当前索引位置没有值,直接初始化一个新节点
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // cas在i位置创建新的元素,当i位置是空时,即能创建成功,结束自旋,否则继续自旋
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // 如果当前节点是转移节点,说明该节点正在扩容需要等待扩容完成
        // 转移节点的hash值是固定的,都是-1
        else if ((fh = f.hash) == MOVED)
            // 扩容
            tab = helpTransfer(tab, f);
        // 节点上有值的
        else {
            V oldVal = null;
            // 锁定当前节点,其他线程不能操作,保证了安全
            synchronized (f) {
                // 这里再次判断i位置的数据没有被修改 使用Unsafe类volatile的操作查看值
                if (tabAt(tab, i) == f) {
                    // 链表
                    if (fh >= 0) {
                        binCount = 1;
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 元素存在的话,判断是否直接修改
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 把新增的元素赋值到链表的最后,退出自旋
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    // 红黑树,这里没有使用TreeNode,使用的是TreeBin,TreeNode只是红黑树的一个节点
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        //满足if的话,把老的值给oldVal
                        //在putTreeVal方法里面,在给红黑树重新着色旋转的时候
                        //会锁住红黑树的根节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                              value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            //binCount不为空,并且 oldVal有值的情况,说明已经新增成功了
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                //这一步几乎走不到。槽点已经上锁,只有在红黑树或者链表新增失败的时候
                //才会走到这里,这两者新增都是自旋的,几乎不会失败
                break;
            }
        }
    }
    //check 容器是否需要扩容,如果需要去扩容,调用 transfer 方法去扩容
    addCount(1L, binCount);
    return null;
}

值得关注的是tabAt(tab, i)方法,其使用Unsafe类volatile的操作volatile式地查看值,保证每次获取到的值都是最新的:

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
  return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}

虽然上面的table变量加了volatile,但也只能保证其引用的可见性,并不能确保其数组中的对象是否是最新的,所以需要Unsafe类volatile式地拿到最新的Node

源码中都有非常详细的注释,就不解释了,我们重点说一下,ConcurrentHashMap 在 put 过程中,采用了哪些手段来保证线程安全。

数组初始化时的线程安全

数组初始化时,首先通过自旋来保证一定可以初始化成功,然后 CAS 设置 SIZECTL,来保证同一时刻只能有一个线程对数组进行初始化,CAS 成功后,还会再次判断当前数组是否已经初始化完成,如果已经初始化完成,就不会再次初始化,通过自旋 + CAS + 双重检查等手段保证了数组初始化时的线程安全,源码如下:

// 初始化 table,通过对 sizeCtl 的变量赋值来保证数组只能被初始化一次
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    // 通过自旋保证初始化成功
    while ((tab = table) == null || tab.length == 0) {
        // 小于0代表有线程正在初始化,释放当前CPU的调度权,自旋
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // CAS赋值保证当前只有一个线程正在初始化,-1代表当前只有一个线程能够初始化,保证了数组初始化的安全性
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                // 很有可能执行到这里的时候,table已经不为空了,双重check
                if ((tab = table) == null || tab.length == 0) {
                    // 进行初始化
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

新增槽点值时的线程安全

此时为了保证线程安全,做了四处优化:

  1. 通过自旋死循环保证一定可以新增成功

    在新增之前,通过 for (Node<K,V>[] tab = table;;) 这样的死循环来保证新增一定可以成功,一旦新增成功,就可以退出当前死循环,新增失败的话,会自旋直到新增成功。

  2. 当前槽点为空时,通过 CAS 新增

    casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null))
    

    Java 这里的写法非常严谨,没有在判断槽点为空的情况下直接赋值,因为在判断槽点为空和赋值的瞬间,很有可能槽点已经被其他线程赋值了,所以我们采用 CAS 算法,能够保证槽点为空的情况下赋值成功,如果恰好槽点已经被其他线程赋值,当前 CAS 操作失败,会再次执行 for 自旋,再走槽点有值的 put 流程,这里就是自旋 + CAS 的结合。

  3. 当前槽点有值时,锁住当前槽点

    put 时,如果当前槽点有值,就是 key 的 hash 冲突的情况,此时槽点上可能是链表或红黑树,我们通过锁住槽点,来保证同一时刻只会有一个线程能对槽点进行修改。

    Node<K,V> f; int n, i, fh;
    // 槽点没值
    if (tab == null || (n = tab.length) == 0)
    	...
        break;
    }
    // 正在扩容
    else if ((fh = f.hash) == MOVED)
        tab = helpTransfer(tab, f);
    else {
        V oldVal = null;
        // 只对头节点加锁
        synchronized (f) {
        ......
        }
    }
    
  4. 红黑树旋转时,锁住红黑树的根节点,保证同一时刻,当前红黑树只能被一个线程旋转

    lockRoot();
    try {
        root = balanceInsertion(root, x);
    } finally {
        unlockRoot();
    }
    

通过以上 4 点,保证了在各种情况下的新增(不考虑扩容的情况下),都是线程安全的,通过自旋 + CAS + 锁三大姿势,实现的很巧妙,值得我们借鉴。

扩容时的线程安全

ConcurrentHashMap 的扩容时机和 HashMap 相同,都是在 put 方法的最后一步检查是否需要扩容。但两者扩容的过程完全不同,ConcurrentHashMap 扩容的方法叫做 transfer,从 put 方法的 addCount 方法进去。transfer 方法的主要思路是:

  1. 首先需要把老数组的值全部拷贝到扩容之后的新数组上,先从数组的队列开始拷贝;
  2. 拷贝数组的槽点时,先把原数组槽点锁住,保证原数组槽点不能操作,成功拷贝到新数组时,把原数组槽点赋值为转移节点;
  3. 这时如果有新数据正好需要 put 到此槽点时,发现槽点为转移节点,就会一直等待,所以在扩容完成之前,该槽点对应的数据是不会发生变化的;
  4. 从数组的尾部拷贝到头部,每拷贝成功一次,就把原数组中的节点设置成转移节点;
  5. 直到所有数组数据都拷贝到新数组时,直接把新数组整个赋值给数组容器,拷贝完成。
// 扩容主要分2步,第一新建新的空数组,第二移动拷贝每个元素到新数组中去
// tab:原数组,nextTab:新数组
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    // 如果新数组为空,初始化,大小为原来的2倍,n<<1
    if (nextTab == null) {            // initiating
        try {
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    // 新数组的长度
    int nextn = nextTab.length;
    // 代表转移节点,说明该节点正在被扩容
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    // 自旋,i的值会从原数组的最大值开始,递减到0
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            // 结束循环的标志
            if (--i >= bound || finishing)
                advance = false;
            // 已经拷贝完成
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            // 每次减少i的值
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        // 说明拷贝结束了
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            // 拷贝结束,直接赋值,因为每次拷贝完一个节点,都在原数组上放转移节点,所以拷贝完成的节点的数据一定不会再发生变化。
            // 原数组发现是转移节点,是不会操作的,会一直等待转移节点消失之后在进行操作。
            // 也就是说数组节点一旦被标记为转移节点,是不会再发生任何变动的,所以不会有任何线程安全的问题
            // 所以此处直接赋值,没有任何问题。
            if (finishing) {
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            synchronized (f) {
                // 进行节点的拷贝
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                         // 如果节点只有单个数据,直接拷贝,如果是链表,循环多次组成链表拷贝
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 在新数组位置上放置拷贝的值
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        // 在老数组位置上放上 ForwardingNode 节点
                        // put 时,发现是 ForwardingNode 节点,就不会再动这个节点的数据了
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    // 红黑树的拷贝
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                        (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                        (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

扩容的关键点,就是如何保证线程安全的,小结有如下几点:

  1. 拷贝槽点时,会把原数组的槽点锁住
  2. 拷贝成功后,会把原数组的槽点设置成转移节点,这样如果有数据要 put 到该节点时,发现该槽点是转移节点,会一直等待,知道扩容成功后,才能继续 put,具体可以看 put 方法中的 helpTransfer 方法
  3. 从尾到头进行拷贝,拷贝成功后直接把原数组的槽点设置为转移节点
  4. 等扩容拷贝都完成之后,直接把新数组的值赋值给数组容器,之前等待 put 的数据才能继续 put

扩容方法还是很有意思的,通过在原数组上设置转移节点,put 时碰到转移节点时会等待扩容成功之后才能 put 的策略,来保证了整个扩容过程中肯定是线程安全的,因为数组的槽点一旦被设置成转移节点,在没有扩容完成之前,是无法进行操作的。

get

ConcurrentHashMap 读的话,就比较简单,先获取数组的下标,然后通过判断数组下标的 key 是否和我们的 key 相等,相等的话直接返回,如果下标的槽点时链表或红黑树的话,分别调用对应的查找数据的方法,整体的思路和 HashMap 很像,源码如下:

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // 计算hashcode
    int h = spread(key.hashCode());
    // 不是空的数组并且当前索引的槽点数据不是空的,否则返回null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 槽点第一个值和key相等 直接返回
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        // 如果是红黑树或者转移节点,使用对应的find方法
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        // 如果是链表,遍历查找
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

ConcurrentHashMap 和 Hashtable 的区别

ConcurrentHashMapHashtable 的区别主要体现在实现线程安全的方式上不同。

  • 底层数据结构: JDK1.7 的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟 HashMap1.8 的结构一样,数组+链表/红黑二叉树。Hashtable 是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;

  • 实现线程安全的方式(重要)

    在 JDK1.7 的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。

    到了 JDK1.8 的时候已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6 以后 对 synchronized 锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;

    Hashtable (同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值