Caocao's Bridges(hdu 4738) (无向图的桥)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_41061455/article/details/81592763

Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7626    Accepted Submission(s): 2334

Problem Description

Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.

Input

There are no more than 12 test cases.
In each test case:
The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )
Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )
The input ends with N = 0 and M = 0.

Output

For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.

Sample Input

3 3 1 2 7 2 3 4 3 1 4 3 2 1 2 7 2 3 4 0 0

Sample Output

-1 4

Source

2013 ACM/ICPC Asia Regional Hangzhou Online

无向图的桥:一条边称为桥(或者割边)当且仅当去掉该边之后的子图不连通。

 桥的求法可以看成是割顶的一种特殊情况,当结点u的子结点v的后代通过反向边只能连回v,那么删除这条边(u, v)就可以使得图G非连通了。用Tarjan算法里面的时间戳表示这个条件,就是low[v]>dfn[u]。 --转自博客

但是这种方法只适用于无重边的情况,因此,我们需要走重边,但不要走同一条边的反向边。处理的方法是对边进行编号。---来自博客

#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn=1e3+10;
struct node
{
    int v,w,id;
    node(int v=0,int w=0,int id=0):v(v),w(w),id(id){}
};
vector<node>G[maxn];
int pre[maxn],low[maxn],n,m,dfs_num,ans;
void init()
{
    memset(pre,0,sizeof(pre));
    memset(low,0,sizeof(low));
    for(int i=0;i<=n;i++) G[i].clear();
    dfs_num=0,ans=INF;
}
int dfs(int u,int fa)
{
    low[u]=pre[u]=++dfs_num;
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i].v;
        int id=G[u][i].id;
        if(id==fa) continue;//同一条边
        if(!pre[v])
        {
            dfs(v,id);
            low[u]=min(low[u],low[v]);
            if(low[v]>pre[u]) ans=min(ans,G[u][i].w);
        }
        else low[u]=min(low[u],pre[v]);
    }
}
int main()
{
    int t;
    while(scanf("%d%d",&n,&m)==2&&(n||m))
    {
        int a,b,c;
        init();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            G[a].push_back(node(b,c,i));
            G[b].push_back(node(a,c,i));
        }
        int cnt=0;
        for(int i=1;i<=n;i++)
            if(!pre[i]) cnt++,dfs(i,0);
        if(cnt>1) ans=0;//多于一个联通分量,不用派人
        else if(ans==INF) ans=-1;
        else if(ans==0) ans=1;//没有人看守,也需要派一个人去炸桥
        printf("%d\n",ans);
    }
}

 

阅读更多

没有更多推荐了,返回首页