圆锥曲线的题目一定是“利用几何条件如斜率关系(如斜率双用)、点的关系,特别是关联点的关系,利用代数条件如韦达,非对称化转化、向量处理技巧,仿射变换等,来寻找与圆锥曲线系数的关系”。其本质上就是多变量的消元转化处理问题。
解答圆锥曲线的思路要有整体思想的意识。大致判断从哪个方向去处理问题,依据就是点与线之间的关系、相关点之间的关系,这些会在题目中以显性或隐性的形式出现。然后再考虑细节问题,如使用什么技巧去做变形处理,而不能本末倒置。
如一条线上三个点,那么这条线的斜率就有两种表达方法,也就建立了一个恒等关系。若直线的两个点还在圆锥曲线上,利用齐次化从二次二元函数中又可以再次获得一个斜率关系,如下面的(4)条。
实际上,圆锥曲线最重要的关系就是点、线关系。有的同学认为这个还不简单么?这个确实不简单!搞清了点线关系及其内在逻辑,就深入的掌握了圆锥曲线转换的原理,解题时事半功倍。
⑴大家最熟悉的是直线形式,应该是y=kx+b,但是有时直接设成这个形式,解题运算起来不是很不方便。
⑵如直线过定点时或证明直线过定点时,设成y-y0=k(x-x0),就可将定点坐标引入。
⑶如已知直线过两点A、B,特别是直线与圆锥曲线相交得到的两点,设成(y-y1)/(y2-y1)=(x-x1)/(x2-x1),将两点纳入直线中,利用斜率关系寻找多个等式关系时,常常使用使得解题方便性增加。直线与向量关系:向量AB=(x2-x1,y2-y1),向量与斜率关系k= (y2-y1)/(x2-x1),【参考一下之前章节的例题,特别是斜率双用】
⑷如涉及到非对称结构,需要进行齐次化问题或转化为斜率双用【通常是为了从二次式转化求得k2=(y/x)2】,或联合使用时,为了对1进行整体等价代换,直线一般设成x/a+y/b=1的形式。【参考一下近期的章节例题】
⑸如在证明一些广乏的定理结论时,特别是圆锥曲线的一般形式(区别于标准式,即圆锥曲线的中心不在直角坐标系的原点),一般设成直线的一般式Ax+By+C=0(A2+B2≠0)。直线一般式与向量的关系:一个法向量为n=(A,B),方向向量为a=(-B,A)【参考一下近期的章节例题】
⑹通常题目给出的是向量关系,如比例关系(比例线段的转化,向量的定点分比公式->如调和点列)、和差关系(向量运算法则,如|OA+OB|=|OA-OB| 通常可推出 向量OA⊥向量OB )、点积的(垂直关系)形式。
【总结】高三复习阶段,务必进行归纳总结,高考真题里面的相关数学解题的思想和常用处理技巧99%都是平时训练过的。大家为什么还不会求解,本质上是题目的条件转化不出来,为什么转化不出来?其一是没有头绪,不知向哪一方面进行转化;其二不知给定的条件用来干什么的。这些问题基本上可以通过平时练习过程中归纳总结解决。
归纳总结不是让大家将题目和答案抄到本子上就完事大吉了,而是要去积极思考,以考察知识点的形式和知识与知识点之间的联系为纲领去收集。最后会发现,实际上翻来覆去就是要用这些知识点去考这些问题点,只是形式不同。于是乎知识体系就这样建立起来了。从而达到“以静制动”的高效解题能力。
需要上述详细资料的朋友,关注我的博客后,私信我免费领取。