随机森林调参

在这里插入图片描述
调参判断:

学习曲线
score_l = []
i = i_range = range(1,201,10)
for i in i_range:
rfc = RandomForestClassifier(n_estimators=i+1
,n_jobs = -1
,random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10)
score_l.append(score.mean())

print(max(score_l),(score_l.index(max(score_l)) * 10) + 1)
plt.figure(figsize=[20,5])
plt.subplots(211)
plt.plot(i_range,score_l,label = ‘cross-vad-learning curve1’)
plt.legend()

网格搜索

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值