机器学习之SVM介绍

转载至:https://blog.csdn.net/lhy2239705435/article/details/90035265

SVM(Support Vector Machine)是用来解决分类问题的。任何一个机器学习问题首先要考虑三个问题:

  1. 模型是什么
  2. 优化目标是什么
  3. 算法是什么

一、SVM
support vector machine,在机器学习中,SVM 既可以做回归,也可以做分类器。

SVM 主要是帮我们找到一个超平面,使不同类的样本分开,并且使得样本集中的点到这个分类超平面的最小距离(分类间隔)最大化。

支持向量就是距离超平面最近的样本点,确定了支持向量也就确定了超平面。

二、硬间隔、软间隔和非线性 SVM
硬间隔:在满足线性可分的基础上,分类完全正确,不存在分类出错的情况

软间隔:在满足线性可分的基础上,允许一部分样本分类出错

非线性SVM:如果样本满足非线性数据,需要引入新的概念:核函数,可以把样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

三、SVM解决多分类问题
SVM 本身设计用来解决二分类问题,在实际的应用中,多分类的情况比较多,比如对文本进行分类,或者对图像进行识别,分类方法包括一对一和一对多。
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

四、构造SVM分类器
model = svm.SVC(kernel=‘rbf’, C=1.0, gamma=‘auto’),kernel 主要包括四种核函数,如下

linear:线性核函数

poly:多项式核函数

rbf:高斯核函数

sigmoid:sigmoid 核函数

在这里插入图片描述

在创建SVM分类器后,可以利用训练集进行分类器训练,model.fit(train_x,train_y)。

利用 prediction=model.predict(test_X) 对结果进行预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值