【问题描述】
当一个数从前往后写与从后往前写时相等,则该数被称为回文数,所有的个位数都是回文数。
所有非回文数通过一系列的操作都可以匹配一个回文数。首先,将该数写反以后与原数相加,判断结果是否为回文数,如果不是,重复上述过程,直到和为回文数为止。例如:对于数67,两步以后可以将其转换为回文数,67+76=143, 143+341=484。
给出一个正整数N,请你找出它所匹配的回文数以及它所经历的步骤数。
【输入形式】
每个输入包含一个测试用例。每个用例包括两正整数n和k,n(<= 1010)是初始数值和K(<= 100)是步骤的最大数目。数字间用空格隔开。【输出形式】
对于每个测试用例,输出两个数字,每行一个。第一个数字是N所匹配的回文数,第二行是找到这个回文数所经历的步骤,如果第K步之后未找到这个回文数,则输出第K步之后的结果和K来代替。
【样例输入】
样例1
67 3
样例2
69 3
【样例输出】
样例1
484
2
样例2
1353
3
#include <iostream>
#include <cmath>
using namespace std;
//将n倒转
int answer(int n) {
int m=0;
while(n>0) {
m=10*m+n%10;
n/=10;
}
return m;
}
//判断n是否为回文数
bool judge(int n) {
return (answer(n)==n)?true:false;
}
int main() {
int n,k,time=0;
cin>>n>>k;
do {
if(judge(n))
break;
time++;
n+=answer(n);
} while(time<k);
cout<<n<<endl<<time;
return 0;
}