C++ VScode配置libtorch,并调用PyTorch模型 按照这个流程进行配置libtorch可以减少大部分的错误,本文从将PyTorch模型trace成C++模型,到配置libtorch,到C++使用libtorch调用CUDA模型均进行了详细的介绍。
Transformer 详细分析,学习总结 Transformer深度学习网络的详细分析。Transformer其实就是由融合了注意力机制的编码器和解码器组成,如下图Transformer的总体模型框架。编码器将输入的句子变成机器学习可以理解的特征向量,并输入到解码器中作为 Keys 和 Values(解码器就直接根据输入获取query,然后输出结果)。
人脸识别演变过程中的 softmax loss、center loss、L-Softmax loss、A-Softmax loss、AM-Softmax loss、ArcFace的完整详细讲解 人脸识别的损失方法,学习汇总
BatchNormalization LayerNormalization详解与区别 个人学习用,记录Batch Normalization与Layer Normalization的区别,也是面试常问的问题。