Camera Raw:移去

Camera Raw 中的移去 Remove模块主要用于去除照片中的不需要的元素,比如污点、电线或其它干扰元素。

快捷键:B

756820222392550275d93c4a5d8734d8.png

移去面板中提供了三种移去模式:移除、修复以及仿制。

移除

Remove

通过智能算法和生成式 AI 来去除不需要的元素。

对象识别 Object Aware可以自动检测并选择照片中的特征明显的对象,然后进行移除。相当于 Photoshop 中的移除工具

使用生成式 AI Generative AI用于识别并去除照片中的复杂对象,例如人物或大的物体,并智能生成内容来填补背景。相当于 Photoshop 中的生成式填充功能。

生成式 AI 通常会生成三个结果版本 Variations以供选择。

提示:

目前,生成式 AI 功能在中国大陆地区不可用。

修复

Heal

相当于 Photoshop 中的污点修复画笔工具

仿制

Clone

相当于 Photoshop 中的仿制图章工具

修复和仿制,都是将要取样的区域(源区域)的像素复制到使用画笔涂抹的区域(目标区域)。

通过勾选“显示叠加”,很清楚看到这两个区域及箭头指示,如下图所示。

58ec8b1ded32ab54eef9424ff59793cc.png

不同的是,修复画笔会将源区域的纹理、光照和阴影等与目标区域相匹配,而克隆画笔仅是将源区域的像素复制到目标区域。

  ◆  ◆

使用方法与技巧

1、画笔通用操作

对应三种移去模式的画笔,为了便于描述,我们可分别称之为:移除画笔、修复画笔以及克隆画笔。

(1)使用画笔在目标区域(想移除的区域)涂抹或单击。

(2)改变画笔大小

方法一:[ / ] 键。

方法二:滚动鼠标滚轮。

方法三:按住 Alt 键并用鼠标右键左右拖动。

(3)改变羽化值(仅限修复画笔和克隆画笔)

方法一:Shift + [ / ] 键。

方法二:按住 Shift 键并滚动鼠标滚轮。

方法三:按住 Alt + Shift 键并用鼠标右键左右拖动。

(4)创建圆形目标区域

使用画笔单击,可创建一个圆形目标区域,并自动查找源区域。

按住 Ctrl + Alt 键单击并拖动可改变圆形目标区域大小。

2、移除画笔

若未勾选“使用生成式 AI”和“对象识别”时,移除画笔相当于 Photoshop 中的内容识别填充功能。

561ac85e9e469967037b57f3c2f21eb7.png

使用移除画笔时,建议先勾选“对象识别”(快捷键:Shift + A),以便自动检测要移除的对象。区域选好后,再去勾选“生成式 AI”(快捷键:Shift + G)。

使用移除画笔时,若按住 Ctrl 键进行涂抹,可跳过“调整”设置直接应用移除。

a01812f23ef465a8c7cb280467de530e.png

“调整” Refine设置只是用于添加 Add和减去 Subtract目标区域。按住 Alt 键可在两者之间切换。

“生成式 AI”不需要指定源区域,“对象识别”本质上是基于照片上其它区域的内容来填充目标区域,因此需要源区域,但它并没有显示源区域位置。

“应用”之后,可按住 Ctrl 键框选以重新指定要取样的区域(源区域)。

或者,跟修复画笔和克隆画笔一样,点击“刷新”按钮,或者按 / 键,将自动去找适合的源区域。

3、修复画笔和克隆画笔

按住 Ctrl 键单击并拖动,在创建圆形目标区域同时可手动指定源区域。

勾选“显示叠加”之后,拖动源区域,也可以手动改变源区域。

4、更新 AI 蒙版

如果在使用移除之前已经创建了蒙版,常常会得到不如意的移除结果。

此时可尝试在“蒙版”面板的对应蒙版的 ... 按钮菜单中选择“更新 AI 蒙版”。

5、删除调整

方法一:

选中图钉标记后,按 Delete 键。

方法二:

按住 Alt 键并单击图钉标记。

方法三:

在修复画笔和克隆画笔状态下,按住 Alt 键框选,可自动删除选框内的标记点。

点击面板右上角的“重置移除”按钮,可删除移去工具所做的所有调整。

  ◆  ◆

面板选项说明

c400b27c787d3d957f7ecdb591a8cefb.png

大小

Size

指定画笔笔尖的直径(像素)。

羽化

Feather

控制目标区域中涂抹部分与周边像素之间的软边过渡。

此选项仅适用于修复画笔和克隆画笔。

不透明度

Opacity

控制应用于目标区域的调整不透明度,即,控制移除效果的强度。

刷新

Refresh

快捷键:/

点击此按钮,可以以照片上的不同区域的内容(源区域)来填充目标区域。

显示叠加

Show Overlay

快捷键:V

勾选或取消勾选此项,可切换图钉、源区域及目标区域轮廓可见性。

使位置可见

Visualize Spots

应翻译为“可视化污点”。

勾选此项,图像将以类似于照亮边缘的黑白形式显示。

64aa8f78826030f40e3ba3fed97e7d51.png

此功能可以帮助找到照片上明显的污点或瑕疵。

比如,相机传感器上的灰尘,模特皮肤上的瑕疵,蓝天上的小缕白云,等等。

e06f0863b2be6bcb194339a383f51042.jpeg

“点赞有美意,赞赏是鼓励”

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值