一个处女座的程序猿

低调,谦虚,不骄不躁。 观察Amazon,追踪FaceBook,跟紧Google,偷窥Microsoft,朝向Silicon Valley …… 哈哈,一起学习啦。本博主做事,从来都是走心不走肾,...

EL之GB(GBC):利用GB对多分类问题进行建模(分层抽样+调1参)并评估

EL之GB(GBC):利用GB对多分类问题进行建模(分层抽样+调1参)并评估 输出结果   T1、 T2、   设计思路   核心代码 #T1、 nEst = 500 depth = 3 learnRate = 0.003 maxFeatures = None su...

2019-01-13 22:59:42

阅读数:554

评论数:0

EL之RF(RFC):利用RF对多分类问题进行建模并评估(六分类+分层抽样)

EL之RF(RFC):利用RF对多分类问题进行建模并评估(六分类+分层抽样) 输出结果 设计思路   核心代码 missCLassError = [] nTreeList = range(50, 2000, 50) for iTrees in nTreeList: ...

2019-01-13 21:07:10

阅读数:31

评论数:0

EL之GB(GBC):利用GB对二分类问题进行建模并评估

EL之GB(GBC):利用GB对二分类问题进行建模并评估 输出结果 T1、纯GB算法 T2、以RF为基学习器的GB算法         设计思路   核心代码 # nEst = 2000 # depth = 3 # learnRate = 0.0...

2019-01-13 19:43:19

阅读数:25

评论数:0

EL之RF(RFC):利用RF对二分类问题进行建模并评估

EL之RF(RFC):利用RF对二分类问题进行建模并评估 输出结果   设计思路   核心代码 auc = [] nTreeList = range(50, 2000, 50) for iTrees in nTreeList: depth = None ...

2019-01-13 14:59:49

阅读数:42

评论数:0

EL之GB(GBM):利用GB对回归(性别属性编码+调2参)问题(整数值年龄预测)建模

EL之GB(GBM):利用GB对回归(性别属性编码+调2参)问题(整数值年龄预测)建模 输出结果 T1、 T2、 设计思路   核心代码 #T1 nEst = 2000 depth = 5 learnRate = 0.003 maxFeatures = None s...

2019-01-12 21:21:57

阅读数:76

评论数:0

EL之RF(RFR):利用RF对回归(性别属性编码)问题(整数值年龄预测)建模

EL之RF(RFR):利用RF对回归(性别属性编码)问题(整数值年龄预测)建模 输出结果   设计思路   核心代码 for iTrees in nTreeList: depth = None abaloneRFModel = ensemble.Rando...

2019-01-09 22:58:49

阅读数:584

评论数:0

EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参)

EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参) 输出结果   设计思路   核心代码 bagFract = 1.0 #----------------------☆☆☆☆☆ nBagSamples = int(l...

2019-01-09 17:21:56

阅读数:39

评论数:0

EL之GB(GBR):利用GBR对回归问题(实数值评分预测)建模

EL之GB(GBR):利用GBR对回归问题(实数值评分预测)建模 输出结果   设计思路   核心代码 wineGBMModel = ensemble.GradientBoostingRegressor(n_estimators=nEst, ...

2019-01-09 10:07:41

阅读数:106

评论数:0

EL之RF(RFR):利用RandomForestRegressor对回归问题(实数值评分预测)建模(调2参)

EL之RF(RFR):利用RandomForestRegressor对回归问题(实数值评分预测)建模(调2参) 输出结果   设计思路   核心代码 mseOos = [] nTreeList = range(100, 1000, 100) #----▲☆▲☆▲ for...

2019-01-08 20:16:11

阅读数:43

评论数:0

EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题

EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题 输出结果   设计思路   核心代码 for iTrees in range(numTreesMax): modelList.ap...

2019-01-08 15:23:26

阅读数:39

评论数:0

EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题

EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题 输出结果   设计思路   核心代码 xList = [] labels = [] names = [] firstLine = True for line in ...

2019-01-08 09:55:42

阅读数:40

评论数:0

EL之Boosting之GB(DTR):简单回归问题使用梯度提升法(DIY数据集+DTR模型+调两参)

EL之Boosting之GB(DTR):简单回归问题使用梯度提升法(DIY数据集+DTR模型+调两参) 输出结果 1、eps=0.1,treeDepth=1 2、eps=0.1,treeDepth=5 2、eps=0.3,treeDepth=5 设计思路   核心...

2019-01-07 22:59:55

阅读数:719

评论数:0

EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题

EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题 输出结果   设计思路   核心思路 #4.1、当treeDepth=1,对图进行可视化 #(1)、定义numTreesMax、treeDepth numTreesMax = ...

2019-01-07 12:06:56

阅读数:53

评论数:5

EL之Bagging(DTR):利用DIY数据集(预留30%数据+两种树深)训练Bagging算法(DTR)

EL之Bagging(DTR):利用DIY数据集(预留30%数据+两种树深)训练Bagging算法(DTR) 输出结果 1、treeDepth=1 2、treeDepth=5   设计思路   核心代码 for iTrees in range(numTrees...

2019-01-07 09:42:30

阅读数:190

评论数:0

Algorithms—ML/EL/RL:机器学习、深度学习、强化学习分类以及相关联系结构图

Algorithms—ML/EL/RL:机器学习、深度学习、强化学习分类以及相关联系结构图 ML/EL/RL联系结构图—简单版本   ML/EL/RL联系结构图—复杂版本 敬请期待          ...

2019-01-06 23:04:08

阅读数:1713

评论数:0

Algorithm:论一个产品经理的十八般武艺

Algorithm:论一个产品经理的十八般武艺 产品经理的的思维构图    

2018-11-17 13:07:29

阅读数:65

评论数:0

Algorithm:算法方向——BAT公司问题面试集锦

Algorithm:BAT公司算法问题面试集锦 概率问题 1、貂蝉与西施回头率比美问题 结论1:貂蝉获胜的概率是0.5,但并不是指貂蝉、西施获胜的概率相等,即貂蝉获胜的概率有可能是90%。 结论2:其实P(C)是接近于0即没有用处的 结论3:如果有超过50%概率(比如60%)获胜,那么尽量多...

2018-10-19 22:39:43

阅读数:40

评论数:0

Algorithm之PGM之BNet:贝叶斯网络BNet的相关论文、过程原理、关键步骤等相关配图

Algorithm之PGM之BNet:贝叶斯网络BNet的相关论文、过程原理、关键步骤等相关配图 BNet的相关论文     BNet的过程原理 1、贝叶斯网络示例 (1)、背景知识:Serum Calcium(血清钙浓度)高于2.75mmo1/L即为高钙血症。许多恶性肿瘤可并发高钙血症...

2018-10-19 22:39:03

阅读数:53

评论数:0

Algorithm之PrA:PrA之nLP非线性规划算法+Matlab 优化工具箱的GUI求解非线性规划

 Algorithm之PrA:PrA之nLP非线性规划算法+Matlab 优化工具箱的GUI求解非线性规划 (1)、编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (2)、编写M文件fun2.m定义非线性约束条件 fu...

2018-09-10 10:51:05

阅读数:76

评论数:0

Algorithm之PrA:PrA之nLP非线性规划算法经典案例剖析+Matlab编程实现

Algorithm之PrA:PrA之nLP整数规划算法经典案例剖析+Matlab编程实现 有约束非线性规划案例分析 1、投资决策问题      某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金 A元,投资于第i(i = 1…,n)个项目需花资金 ai元,...

2018-09-09 09:53:35

阅读数:156

评论数:0

提示
确定要删除当前文章?
取消 删除