ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能

ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能

 

 

 

 

目录

输出结果

设计思路

核心代码


 

 

 

 

 

 

输出结果

 

设计思路

 

核心代码


estimator = PCA(n_components=20)   
pca_X_train = estimator.fit_transform(X_train) 
pca_X_test = estimator.transform(X_test)      

pca_svc = LinearSVC()
pca_svc.fit(pca_X_train, y_train)
pca_y_predict = pca_svc.predict(pca_X_test)
svc.score(X_test, y_test)
classification_report(y_test, y_predict, target_names=np.arange(10).astype(str))

pca_svc.score(pca_X_test, y_test)
classification_report(y_test, pca_y_predict, target_names=np.arange(10).astype(str))

 

 

 

 

发布了1663 篇原创文章 · 获赞 7384 · 访问量 1341万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503

分享到微信朋友圈

×

扫一扫,手机浏览