
Paper
一个处女座的程序猿
人工智能硕博生,拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
展开
-
Paper:《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读
Paper:《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读目录Paper:《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读Abstract1 Introduction简介2 Background背景2.1 Transfer Learning and Supervis原创 2021-12-12 21:46:33 · 2008 阅读 · 0 评论 -
Paper:《Multimodal Machine Learning: A Survey and Taxonomy,多模态机器学习:综述与分类》翻译与解读
Paper:《Multimodal Machine Learning: A Survey and Taxonomy,多模态机器学习:综述与分类》翻译与解读目录《Multimodal Machine Learning: A Survey and Taxonomy》翻译与解读Abstract1 INTRODUCTION2 Applications: a historical perspective应用:历史视角3 Multimodal Representations多模态表示3原创 2018-09-27 09:02:13 · 10391 阅读 · 0 评论 -
ML:MLOps系列讲解之《MLOps原则—迭代增量过程/自动化/持续部署/版本控制/实验跟踪/测试/监控/“ML成绩”系统/可再现性/松散耦合架构(模块化)/基于ML的软件交付指标等》解读
ML:MLOps系列讲解之《MLOps原则—迭代增量过程/自动化/持续部署/版本控制/实验跟踪/测试/监控/“ML成绩”系统/可再现性/松散耦合架构(模块化)/基于ML的软件交付指标/MLO等》解读目录MLOps系列讲解之《MLOps原则》解读5.1、Iterative-Incremental Process in MLOps MLOps中的迭代增量过程5.2、Automation自动化5.3、Continuous X持续部署5.4、Versioning版本控制5.5、Exp原创 2022-02-07 19:23:12 · 1508 阅读 · 1 评论 -
AI:Algorithmia《2020 state of enterprise machine learning—2020年企业机器学习状况》翻译与解读
AI:Algorithmia《2020 state of enterprise machine learning—2020年企业机器学习状况》翻译与解读目录《2020 state of enterprise machine learning》翻译与解读IntroductionSurvey at a glance概览Key finding 1: The rise of the data science arsenal for machine learning用于机器学习的数据科原创 2021-03-17 00:26:25 · 17212 阅读 · 1 评论 -
AI:《A Simple Tool to Start Making Decisions with the Help of AI—借助人工智能开始决策的简单工具》翻译与解读
AI:《A Simple Tool to Start Making Decisions with the Help of AI—借助人工智能开始决策的简单工具》翻译与解读目录《A Simple Tool to Start Making Decisions with the Help of AI》翻译与解读Summary思考 Al 如何帮助做出业务决策—The Al CanvasAI Canvas如何工作—利用人工智能解决家庭安全警报案例PREDICTION→JUDGMENT→AC原创 2018-05-27 14:55:20 · 24974 阅读 · 2 评论 -
AI:《DEEP LEARNING’S DIMINISHING RETURNS—深度学习的收益递减》翻译与解读
AI:《DEEP LEARNING’S DIMINISHING RETURNS—深度学习的收益递减》翻译与解读导读:深度学习的收益递减。麻省理工学院的 Neil Thompson 和他的几位合作者以一篇关于训练深度学习系统的计算和能源成本的深思熟虑的专题文章夺得榜首。 他们分析了图像分类器的改进,发现“要将错误率减半,可能需要 500 倍以上的计算资源。” 他们写道:“面对飞涨的成本,研究人员要么不得不想出更有效的方法来解决这些问题,要么放弃对这些问题的研究,进展就会停滞不前。” 不过,他们的文章并原创 2022-01-06 00:48:12 · 6406 阅读 · 1 评论 -
Paper:《NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion,女娲:用于神经视觉世界创造的视觉》翻译与解读
Paper:《NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion&女娲:用于神经视觉世界创造的视觉》翻译与解读导读:微软亚洲研究院联手北京大学,2021年11月,在GitHub 开源了一个多模态预训练模型:NÜWA(女娲),可实现文本/草图转图像、图像补全、文字/草图转视频等任务,功能异常强大。目录《NÜWA: Visual Synthesis Pre-training for Neural visUal原创 2022-01-06 21:30:01 · 3929 阅读 · 0 评论 -
AI:《Why is DevOps for Machine Learning so Different?—为什么机器学习的 DevOps 如此不同?》翻译与解读
AI:《Why is DevOps for Machine Learning so Different?—为什么机器学习的 DevOps 如此不同?》翻译与解读目录《Why is DevOps for Machine Learning so Different?》翻译与解读Current State of DevOps vs MLOpsWhy So Different?WorkflowsTrainingLive Predictions and Model ServingR原创 2020-03-01 00:59:35 · 4316 阅读 · 0 评论 -
Paper:《Hidden Technical Debt in Machine Learning Systems—机器学习系统中隐藏的技术债》翻译与解读
Paper:《Hidden Technical Debt in Machine Learning Systems—机器学习系统中隐藏的技术债》翻译与解读导读:机器学习系统中,隐藏多少技术债呢?这篇文章以讲述DS整个流程为案例,深刻剖析了DS的长期价值,从长期考虑如何避免维护成本的上升。文章还强调了一点,模型本身再整个产品链中只占很小的一块(虽然时核心模块)。目录《Hidden Technical Debt in Machine Learning Systems》翻译与解读Abstract原创 2018-03-31 11:35:37 · 10948 阅读 · 0 评论 -
Paper:《Spatial Transformer Networks》的翻译与解读
Paper:《Spatial Transformer Networks》的翻译与解读目录《Spatial Transformer Networks》的翻译与解读Abstract1 Introduction 2 Related Work 3 Spatial Transformers 3.1 Localisation Network 3.2 Parameterised Sampling Grid 3.3 Differentiable Image S...原创 2021-02-24 23:47:47 · 3382 阅读 · 0 评论 -
Paper:《CatBoost: unbiased boosting with categorical features》的翻译与解读
Paper:《CatBoost: unbiased boosting with categorical features》的翻译与解读目录《CatBoost: unbiased boosting with categorical features》的翻译与解读Abstract1 Introduction2 Background3 Categorical features3.1 Related work on categorical feature3.2 Ta...原创 2021-01-10 00:10:52 · 2605 阅读 · 0 评论 -
Paper:《A Few Useful Things to Know About Machine Learning—关于机器学习的一些有用的知识》翻译与解读
Paper:《A Few Useful Things to Know About Machine Learning—关于机器学习的一些有用的知识》翻译与解读目录《A Few Useful Things to Know About Machine Learning》翻译与解读了解机器学习的一些有用的东西key insights重要见解Learning = Representation + Evaluation + Optimization 学习=表示+评估+优化I原创 2020-12-27 23:53:46 · 3750 阅读 · 2 评论 -
Paper:《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译
Paper:《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译导读:2017年11月25日,来自华盛顿大学的Scott M. Lundberg和Su-In Lee在《解释模型预测的统一方法》论文中,提出了SHAP值作为特征重要性的统一度量。SHAP可以为每个特征分配一个特定预测的重要性值。它的意义在于解释现代机器学习中大多数的黑盒模型,为效果好的ML模型量化各个特征的贡献度。目录《A Unifi原创 2020-05-09 20:03:50 · 5633 阅读 · 1 评论 -
Paper之IEEE&RSJ:2009年~2019年机器人技术(IEEE机器人和自动化国际会议&RSJ智能机器人与系统国际会议&机器人技术:科学与系统&机器人学报)历年最佳论文简介及其解读
Paper之IEEE&RSJ:2009年~2019年机器人技术(IEEE机器人和自动化国际会议&RSJ智能机器人与系统国际会议&机器人技术:科学与系统&机器人学报)历年最佳论文简介及其解读目录会议期刊来源论文介绍Robotic Pick and Place of Novel Objects in Clutter with Multi Affordance Grasping and Cross Domain Image Matching通过多 ...原创 2020-11-07 17:48:11 · 3206 阅读 · 0 评论 -
Paper之ACMCH&UIST&ICUC&IJHC:2009年~2019年人机交互技术(计算系统人为因素会议&用户界面软件&计算国际会议&国际人类计算机研究&人机交互的交易)历年最佳论文简介及其解读
Paper之CVPR&UIST&ICUC&IJHC&TCHI:2009年~2019年人机交互技术(ACM CHI计算系统人为因素会议&ACM用户界面软件和技术研讨会&ACM泛在计算国际会议&国际人类计算机研究杂志&ACM关于人机交互的交易)历年最佳论文简介及其解读Paper之CVPR&UIST&ICUC&IJHC:2009年~2019年人机交互技术(计算系统人为因素会议&用户界面软件&计算国际会议&a原创 2020-11-06 22:33:24 · 3558 阅读 · 1 评论 -
Paper:《First Order Motion Model for Image Animation》翻译与解读
Paper:《First Order Motion Model for Image Animation》翻译与解读《First Order Motion Model for Image Animation》翻译与解读相关论文 《First Order Motion Model for Image Animation》 https://papers.nips.cc/paper/8935-first-order-motion-model-for-image-a...原创 2020-08-30 15:48:52 · 5706 阅读 · 1 评论 -
Paper:GPT-3《 Language Models are Few-Shot Learners》的翻译与解读
Paper:GPT-3《 Language Models are Few-Shot Learners》的翻译与解读目录《GPT-3: Language Models are Few-Shot Learners》的翻译与解读Abstract1 Introduction2 Approach2.1 Model and Architectures2.2 Training Dataset2.3 Training Process2.4 Evaluation《GPT原创 2020-07-29 22:37:08 · 4827 阅读 · 1 评论 -
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读《Graph Neural Networks: A Review of Methods and Applications》翻译与解读原论文地址:https://arxiv.org/pdf/2007.06559.pdf...原创 2020-07-18 12:20:27 · 6356 阅读 · 2 评论 -
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读《Graph Neural Networks: A Review of Methods and Applications》翻译与解读Jie Zhou∗ , Ganqu Cui∗ , Zhengyan Zhang∗ , Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun原创 2020-01-08 10:15:19 · 4017 阅读 · 0 评论 -
Paper:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读
Paper:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读目录YOLOv4: Optimal Speed and Accuracy of Object DetectionAbstract1. Introduction2. Related work2.1. Object detection models2.2. Bag of freebies2.3. Bag of specials3...原创 2020-05-31 09:53:29 · 10039 阅读 · 0 评论 -
Paper之ICASSP&IEEEAUDIOSPE:2018~2019年ICASSP国际声学、语音和信号处理会议&IEEE-ACM T AUDIO SPE音频、语音和语言处理期刊最佳论文简介及其解读
Paper之ICASSP&TASLP:2018~2019年ICASSP国际声学、语音和信号处理会议&IEEE-ACM T AUDIO SPE音频、语音和语言处理期刊最佳论文简介及其解读目录ICASSP国际声学、语音和信号处理会议&IEEE-ACM T AUDIO SPE音频、语音和语言处理期刊简介ICASSP国际声学、语音和信号处理会议IEEE-ACM T AUDIO SPE音频、语音和语言处理期刊简介历年经典论文ICASSP国际...原创 2020-05-30 15:38:08 · 8029 阅读 · 0 评论 -
Paper:《How far are we from solving the 2D & 3D Face Alignment problem? 》解读与翻译
Paper:《How far are we from solving the 2D & 3D Face Alignment problem? 》解读与翻译本文研究了在现有的二维和三维人脸定位数据集上,一个非常深入的神经网络离达到接近饱和的性能还有多远。为此,我们做出了以下5项贡献:(a)我们首次通过将最先进的landmark 定位架构与最先进的残差结合,构建了一个非常强大的基线,在一个非常大但经过综合扩展的2D面部landmark 数据集上训练,最后在所有其他2D面部landmark 数据集上对其进行原创 2019-11-26 15:00:59 · 3299 阅读 · 1 评论 -
Paper:He参数初始化之《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet C》的翻译与解读
Paper:He参数初始化之《Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification》的翻译与解读Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Class...原创 2020-04-10 17:36:01 · 6480 阅读 · 1 评论 -
Paper:Xavier参数初始化之《Understanding the difficulty of training deep feedforward neural networks》的翻译与解读
Paper:Xavier参数初始化之《Understanding the difficulty of training deep feedforward neural networks》的翻译与解读目录Understanding the difficulty of training deep feedforward neural networksAbstract5 Er...原创 2020-04-10 17:27:19 · 4523 阅读 · 0 评论 -
DL之YoloV3:YoloV3论文《YOLOv3: An Incremental Improvement》的翻译与解读
DL之YoloV3:YoloV3论文《YOLOv3: An Incremental Improvement》的翻译与解读目录YoloV3论文翻译与解读Abstract1. Introduction2. The DealYoloV3论文翻译与解读Abstract We present some updates to YOLO!...原创 2018-12-12 08:50:48 · 12022 阅读 · 0 评论 -
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》
Paper之DL之BP:《Understanding the difficulty of training deep feedforward neural networks》目录原文解读文章内容以及划重点结论原文解读原文:Understanding the difficulty of training deep feedforward neur...原创 2018-06-24 11:20:31 · 8765 阅读 · 0 评论 -
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读Generating Sequences With Recurrent Neural Networks作者:Alex Graves Department of Computer Science University of To...原创 2020-03-15 14:08:31 · 6511 阅读 · 2 评论 -
Paper:《Adam: A Method for Stochastic Optimization》的翻译与解读
Paper:《Adam: A Method for Stochastic Optimization》的翻译与解读目录Adam: A Method for Stochastic OptimizationABSTRACT1、INTRODUCTION3、CONCLUSIONAdam: A Method for Stochastic Optimizat...原创 2020-03-12 22:17:22 · 5677 阅读 · 2 评论 -
Paper之ACL&EMNLP:2009年~2019年ACL计算语言学协会年会&EMNLP自然语言处理的经验方法会议历年最佳论文简介及其解读
Paper之ACL&EMNLP:2009年~2019年ACL计算语言学协会年会&EMNLP自然语言处理会的经验方法会议历年最佳论文简介及其解读目录ACL计算语言学协会年会&EMNLP自然语言处理会的简介ACLEMNLP历年经典论文BERT: Pre-training of Deep Bidirectional Transformers for Language UnderstandingBERT: 语言理解的深层双向转换器的预训练Semi-Supervised Learn原创 2020-02-29 23:17:22 · 2655 阅读 · 1 评论 -
NLP:LSTM之父眼中的深度学习十年简史《The 2010s: Our Decade of Deep Learning / Outlook on the 2020s》的参考文献
Paper:LSTM之父眼中的深度学习十年简史《The 2010s: Our Decade of Deep Learning / Outlook on the 2020s》的参考文章The 2010s: Our Decade of Deep Learning / Outlook on the 2020sReferences Beyond Those in Reference[MIR...原创 2020-02-24 20:31:25 · 3755 阅读 · 1 评论 -
Paper:LSTM之父眼中的深度学习十年简史《The 2010s: Our Decade of Deep Learning / Outlook on the 2020s》的解读
Paper:LSTM之父眼中的深度学习十年简史《The 2010s: Our Decade of Deep Learning / Outlook on the 2020s》的解读The 2010s: Our Decade of Deep Learning / Outlook on the 2020s A previous post[MIR](2019) focused on...原创 2020-02-24 20:16:58 · 6086 阅读 · 0 评论 -
Paper:2020.02.09钟南山团队首篇新冠病毒论文《Clinical characteristics of 2019 novel coronavirus infection in China》
Paper:2020.02.09钟南山团队首篇新冠病毒论文《Clinical characteristics of 2019 novel coronavirus infection in China》翻译并解读导读:刷新认知!钟南山团队发布新冠病毒最新论文:潜伏期最长24天,与肺炎联系待考。2020年2月9日,以钟南山院士为通讯作者的30多位专家院士在在预印版平台medRxiv 上发表未经...原创 2020-02-10 14:10:37 · 28536 阅读 · 6 评论 -
Paper之KE之CIKM&IEEE-TKDE:Knowledge Engineering知识工程领域高水平论文翻译及其解读
Paper之KE之CIKM&IEEE-TKDE:Knowledge Engineering知识工程领域高水平论文翻译及其解读目录Knowledge Engineering知识工程领域高水平论文相关会议IEEE-TKDECIKMKnowledge Engineering知识工程领域高水平论文翻译及其解读Convolutional 2D Knowledge Gra...原创 2020-01-13 16:33:38 · 7134 阅读 · 0 评论 -
Paper之EfficientDet: 《Scalable and Efficient Object Detection—可扩展和高效的目标检测》的翻译及其解读
Paper之EfficientDet: 《Scalable and Efficient Object Detection—可扩展和高效的目标检测》的翻译及其解读导读:2019年11月21日,谷歌大脑团队发布了论文 EfficientDet: Scalable and Efficient Object Detection。Google Brain 团队的三位 Auto ML 大佬 Ming...原创 2020-01-09 09:31:13 · 7685 阅读 · 2 评论 -
Paper之NIPS/NeurIPS:2009年~2019年NIPS/NeurIPS(神经信息处理系统进展大会)历年最佳论文简介及其解读
Paper之NIPS/NeurIPS:2009年~2019年NIPS/NeurIPS(神经信息处理系统进展大会)历年最佳论文简介及其解读导读:十年磨一剑,霜刃未曾试。今日把示君,谁有不平事?整整一个十年过去了,带大家解读《神经信息处理系统进展大会》历年最佳论文,了解并探究与神经信息处理系统的重要进展。了解过去,读懂现在,把握未来!目录NIPS(神经信息处理系统进展大...原创 2020-01-04 21:57:45 · 9011 阅读 · 1 评论 -
Paper之ICML:2009年~2019年ICML历年最佳论文简介及其解读—(International Conference on Machine Learning,国际机器学习大会)
Paper之ICML:2009年~2019年ICML历年最佳论文简介及其解读—(International Conference on Machine Learning,国际机器学习大会)导读:十年磨一剑,霜刃未曾试。今日把示君,谁有不平事?整整一个十年过去了,带大家解读《国际机器学习大会》历年的最佳论文,了解并探究与机器学习的重要进展。了解过去,读懂现在,把握未来!目录...原创 2020-01-04 21:03:22 · 9131 阅读 · 2 评论 -
Paper:《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗》翻译并解读
Paper:《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗》翻译并解读目录Abstract1、Introduction 2. Method2.1. Simultaneous Detection and Association 2.2. Confidence Map...原创 2019-08-29 21:25:18 · 4680 阅读 · 0 评论 -
Paper:2017年的Google机器翻译团队《Transformer:Attention Is All You Need》翻译并解读
Paper:2017年的Google机器翻译团队《Transformer:Attention Is All You Need》翻译并解读目录论文评价1、Motivation:2、创新点:Abstract 1、Introduction2、Background3、Model Architecture3.1、Encoder and Decoder Stacks3.2、...原创 2019-08-28 09:20:32 · 7696 阅读 · 0 评论 -
Paper之CV:《One Millisecond Face Alignment with an Ensemble of Regression Trees》的翻译与解读
Paper之CV:One Millisecond Face Alignment with an Ensemble of Regression Trees目录One Millisecond Face Alignment with an Ensemble of Regression TreesOne Millisecond Face Alignm...原创 2018-07-06 12:28:49 · 9420 阅读 · 1 评论 -
ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
Paper:机器学习、深度学习常用的外文引用References参考文献集合(建议收藏,持续更新)References1、国外格式[1]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature,...原创 2018-07-22 15:24:08 · 29824 阅读 · 1 评论