Paper
文章平均质量分 88
一个处女座的程序猿
人工智能硕博学历,拥有十多项发明专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN社区/51CTO/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万。正在撰写《AI算法最新实战》一书,目前已30万字
展开
-
LLMs之PEFT之Llama-2:《LoRA Learns Less and Forgets LessLoRA学得更少但遗忘得也更少》翻译与解读
LLMs之PEFT之Llama-2:《LoRA Learns Less and Forgets Less》翻译与解读目录《LoRA Learns Less and Forgets Less》翻译与解读Abstract摘要1 Introduction引言6 Discussion讨论7 Conclusion结论《LoRA Learns Less and Forgets Less》翻译与解读地址论文地址:https://arxiv.org/abs/2405.0原创 2024-05-26 01:07:21 · 1577 阅读 · 0 评论 -
DL之RNN/LSTM/GRU:《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling门控循环神经网
DL之RNN/LSTM/GRU:《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling门控循环神经网络在序列建模上的实证评估》的翻译与解读目录《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》的翻译与解读Abstract1 Introduction3 Gated Recurrent原创 2018-08-19 23:55:45 · 15328 阅读 · 2 评论 -
LLMs之FLM-101B:《FLM-101B: An Open LLM and How to Train It with $100K Budget一个开放的LLM和如何用10万美元的预算训练训它》翻
LLM之FLM-101B:《FLM-101B: An Open LLM and How to Train It with $100K Budget一个开放的LLM和如何用10万美元的预算训练训它》翻译与解读目录《FLM-101B: An Open LLM and How to Train It with $100K Budget》翻译与解读Abstract摘要1 Introduction引言2 Design Overview of FLM-101B—FLM-1原创 2023-09-26 22:37:43 · 2274 阅读 · 0 评论 -
LLMs:《PaLM: Scaling Language Modeling with Pathways》翻译与解读
LLMs:《PaLM: Scaling Language Modeling with Pathways》翻译与解读目录《PaLM: Scaling Language Modeling with Pathways》翻译与解读Abstract1、Introduction介绍2、Model Architecture模型架构3、Training Dataset训练数据集4、Training Infrastructure训练基础设施5、Trai原创 2022-06-27 00:29:58 · 4886 阅读 · 1 评论 -
LLMs之ROME:ROME的简介(定位和编辑GPT中的事实关联—翻译与解读)、原理探讨、GitHub的两种方法实现之详细攻略
LLMs之ROME:ROME的简介(《Locating and Editing Factual Associations in GPT定位和编辑GPT中的事实关联》翻译与解读)、原理探讨、GitHub的两种方法实现之详细攻略目录一、《Locating and Editing Factual Associations in GPT》—翻译与解读二、《Locating and Editing Factual Associations in GPT》博客文原创 2023-04-22 23:33:52 · 2056 阅读 · 2 评论 -
NLP之Word2Vec【CBOW/Skip-Gram】:《Efficient Estimation of Word Representations in Vector Space向量空间中词表示的有
NLP之Word2Vec【CBOW/Skip-Gram】:《Efficient Estimation of Word Representations in Vector Space向量空间中词表示的有效估计》翻译与解读《Efficient Estimation of Word Representations in Vector Space》翻译与解读地址论文:https://arxiv.org/abs/1301.3781时间2013年1月16日作者Googl原创 2018-10-15 15:15:00 · 14121 阅读 · 0 评论 -
LLMs:《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读
LLMs:《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读目录《Orca: Progressive Learning from Complex Explanation Traces of GPT-4》翻译与解读Abstract1、Introduction引言7、Limitations限制8、Conclusions结论《Orca: Progressive Learnin原创 2023-06-10 02:54:21 · 1093 阅读 · 0 评论 -
LLMs之ERNIE 3.0/ERNIE 3.0 Titan:《ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language
LLMs之ERNIE 3.0/ERNIE 3.0 Titan:《ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation》翻译与解读《ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation》翻译与解原创 2022-02-27 23:38:46 · 3660 阅读 · 0 评论 -
Paper:《GPT-4 Technical Report》的翻译与解读
Paper:《GPT-4 Technical Report》的翻译与解读目录Paper:《GPT-4 Technical Report》的翻译与解读Abstract摘要1、Introduction简介2、Scope and Limitations of this Technical Report本技术报告的范围和局限3、Predictable Scaling可预测的比例4、Capabilities能力5、Limitations局限性原创 2023-03-15 23:16:16 · 10488 阅读 · 1 评论 -
Paper:《Pre-trained Models for Natural Language Processing: A Survey自然语言处理的预训练模型综述》翻译与解读
Paper:《Pre-trained Models for Natural Language Processing: A Survey自然语言处理的预训练模型综述》翻译与解读目录Paper:《Pre-trained Models for Natural Language Processing: A Survey自然语言处理的预训练模型综述》翻译与解读Abstract1、Introduction2、Background3 Overview of PTMs—PT原创 2022-07-03 23:58:29 · 6813 阅读 · 0 评论 -
Pape之DL之CNN:2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》翻译并解读第四章
Pape之DL之CNN:2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》翻译并解读第四章:深度卷积神经网络的最新架构综述更新中……原创 2019-11-08 23:28:00 · 9878 阅读 · 1 评论 -
Pape之DL之CNN:2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》翻译并解读1~3
hardware深度卷积神经网络(CNNs)是一种特殊类型的神经网络,在各种竞争性基准测试中表现出了最先进的性能。深度CNN强大的学习能力很大程度上是由于它使用了多个特征提取阶段(隐含层),可以从数据中自动学习表示。大量数据的可用性和硬件处理单元的改进加速了CNNs的研究,并且,最近报道了非常有意思的深度CNN架构。最近开发深度CNNs的竞赛表明,创新的架构思想和参数优化可以提高CNN的性能。为此,在CNN的设计中探索了不同的思路,如使用不同的激活和丢失函数、参数优化、正则化以及处理单元的重组。原创 2019-11-08 22:26:04 · 9046 阅读 · 1 评论 -
Pape之DL之CNN:2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》翻译并解读5~8
Pape之DL之CNN:2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》翻译并解读第五章~第八章:深度卷积神经网络的最新架构综述更新中……原创 2019-11-09 20:22:50 · 5409 阅读 · 1 评论 -
Paper:《Explainable Artificial Intelligence (XAI): Concepts&可解释的人工智能:负责任人工智能的概念、分类法、机遇和挑战》翻译与解读02
Paper:《Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI&可解释的人工智能 (XAI):负责任人工智能的概念、分类法、机遇和挑战》翻译与解读02目录5、XAI: Opportunities, Challenges and Future Research Needs机遇、挑战和未来研究需求5.1、On the Tradeo原创 2022-09-06 22:38:26 · 1518 阅读 · 0 评论 -
Paper:《Explainable Artificial Intelligence (XAI): Concepts&可解释的人工智能:负责任人工智能的概念、分类法、机遇和挑战》翻译与解读01
Paper:《Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI&可解释的人工智能 (XAI):负责任人工智能的概念、分类法、机遇和挑战》翻译与解读01目录《Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Chal原创 2022-09-06 22:33:04 · 2006 阅读 · 0 评论 -
Paper:可解释性之PFI《All Models are Wrong, but Many are Useful: Learning a Variable’s Importance》翻译与解读
Paper:可解释性之PFI《All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously-所有模型都是错误的,但许多模型都是有用的:通过同时研究一整类预测模型来了解变量的重要性》翻译与解读目录《All Models are Wrong, but Many are Useful:原创 2022-07-26 00:00:18 · 3113 阅读 · 1 评论 -
Paper:可解释性之ICE/PDP《Peeking Inside the Black Box: Visualizing Statisti窥视黑盒内部:用个体条件期望ICE图可视化统计学习》翻译与解读
Paper:可解释性之ICE/PDP《Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation-窥视黑盒内部:用个体条件期望ICE图可视化统计学习》翻译与解读目录Paper:《Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of In原创 2022-07-25 00:01:00 · 2130 阅读 · 0 评论 -
Paper:可解释性之PDP来源之《Greedy Function Approximation: A Gradient Boosting Machine贪心函数逼近:梯度提升机器模型》翻译与解读
Paper:可解释性之PDP来源之《Greedy Function Approximation: A Gradient Boosting Machine贪心函数逼近:梯度提升机器模型》翻译与解读目录《Greedy Function Approximation: A Gradient Boosting Machine贪心函数逼近:梯度提升机器模型》翻译与解读—PDP来源Abstract8. Interpretation解释《Greedy Function Approximation原创 2022-07-24 20:53:53 · 1664 阅读 · 0 评论 -
ML之PDP/ICE/PFI/GS&LS/LIME/SHAP:《Interpretability Methods in Machine Learning: A Brief Survey机器学习可解释性
ML之PDP/ICE/PFI/GS&LS/LIME/SHAP:《Interpretability Methods in Machine Learning: A Brief Survey—机器学习中的可解释性方法的简要综述》翻译与解读目录《Interpretability Methods in Machine Learning: A Brief Survey》翻译与解读《Interpretability Methods in Machine Learning: A原创 2022-07-20 23:39:52 · 2468 阅读 · 0 评论 -
Paper:LIME之《Why Should I Trust You? Explaining the Predictions of Any Classifier为什么要相信你?解释任何分类器的预测》翻
Paper:LIME之《Why Should I Trust You?Explaining the Predictions of Any Classifier为什么要相信你?解释任何分类器的预测》翻译与解读目录Paper:《"Why Should I Trust You?": Explaining the Predictions of Any Classifier》翻译与解读ABSTRACT1.INTRODUCTION2.THE CASE FOR EXPLANATIONS3.原创 2022-07-14 00:33:56 · 4661 阅读 · 0 评论 -
Paper:《Explainable AI for Trees: From Local Explanations to Global Understanding树类的可解释性:从局部解释到全局理解》翻
Paper:《Explainable AI for Trees: From Local Explanations to Global Understanding—人工智能领域树类模型的可解释性:从局部解释到全局理解》翻译与解读目录Paper:《Explainable AI for Trees: From Local Explanations to Global Understanding》翻译与解读Abstract1. Introduction2. Results2.1 Tree-based mode原创 2022-07-10 00:52:35 · 2111 阅读 · 0 评论 -
Paper:可解释性之SHAP《Fast TreeSHAP: Accelerating SHAP Value Computation for Trees》翻译与解读
Paper:可解释性之SHAP《Fast TreeSHAP: Accelerating SHAP Value Computation for Trees》翻译与解读目录《Fast TreeSHAP: Accelerating SHAP Value Computation for Trees》翻译与解读Abstract1.Introduction2.Related Work3.Background4 Fast TreeSHAP5.Evaluation原创 2022-07-09 19:38:19 · 1432 阅读 · 0 评论 -
Paper:大模型之《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读
Paper:大模型之《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读目录Paper:《Pre-Trained Models: Past, Present and Future大规模预训练模型的发展历史、最新现状和未来发展三个方向》翻译与解读Abstract1 Introduction简介2 Background背景2.1 Transfer Learning and Supervised Pre-Tra原创 2021-12-12 21:46:33 · 8339 阅读 · 0 评论 -
Paper:《Multimodal Machine Learning: A Survey and Taxonomy,多模态机器学习:综述与分类》翻译与解读
Paper:《Multimodal Machine Learning: A Survey and Taxonomy,多模态机器学习:综述与分类》翻译与解读目录《Multimodal Machine Learning: A Survey and Taxonomy》翻译与解读Abstract1 INTRODUCTION2 Applications: a historical perspective应用:历史视角3 Multimodal Representations多模态表示3原创 2018-09-27 09:02:13 · 15443 阅读 · 0 评论 -
ML:MLOps系列讲解之《MLOps原则—迭代增量过程/自动化/持续部署/版本控制/实验跟踪/测试/监控/“ML成绩”系统/可再现性/松散耦合架构(模块化)/基于ML的软件交付指标等》解读
ML:MLOps系列讲解之《MLOps原则—迭代增量过程/自动化/持续部署/版本控制/实验跟踪/测试/监控/“ML成绩”系统/可再现性/松散耦合架构(模块化)/基于ML的软件交付指标/MLO等》解读目录MLOps系列讲解之《MLOps原则》解读5.1、Iterative-Incremental Process in MLOps MLOps中的迭代增量过程5.2、Automation自动化5.3、Continuous X持续部署5.4、Versioning版本控制5.5、Exp原创 2022-02-07 19:23:12 · 2268 阅读 · 1 评论 -
AI:Algorithmia《2020 state of enterprise machine learning—2020年企业机器学习状况》翻译与解读
AI:Algorithmia《2020 state of enterprise machine learning—2020年企业机器学习状况》翻译与解读目录《2020 state of enterprise machine learning》翻译与解读IntroductionSurvey at a glance概览Key finding 1: The rise of the data science arsenal for machine learning用于机器学习的数据科原创 2021-03-17 00:26:25 · 18428 阅读 · 1 评论 -
AI:人工智能领域之《A Simple Tool to Start Making Decisions with the Help of AI—借助人工智能开始决策的简单工具》翻译与解读
明确整个组织中每个关键决策的这七个因素,将有助于您开始识别AI降低成本或提高性能的机会。这里我们讨论了一个与特定情况相关的决策。要开始使用AI,您面临的挑战是确定您的组织中的关键决策,而这些决策的结果取决于不确定性。填写AI Canvas上不会告诉你您是应该制作自己的 AI 还是从供应商处购买 AI,但它会帮助你阐明 AI 将做出什么贡献(预测),它将如何与人类交互(判断),它将如何用于影响决策(行动),如何衡量成功(结果),以及训练、操作和改进 AI 所需的数据类型。潜力是巨大的。原创 2018-05-27 14:55:20 · 26357 阅读 · 2 评论 -
DL:《Deep Learning’S Diminishing Returns—深度学习的收益递减—训练深度学习系统的计算和能源成本的深思熟虑》翻译与解读
DL:《Deep Learning’S Diminishing Returns—深度学习的收益递减—训练深度学习系统的计算和能源成本的深思熟虑》翻译与解读目录《DEEP LEARNING’S DIMINISHING RETURNS》翻译与解读《DEEP LEARNING’S DIMINISHING RETURNS》翻译与解读文章地址:Deep Learning’s Diminishing Returns - IEEE Spectrum发布时间:2021年9月24日D原创 2022-01-06 00:48:12 · 7681 阅读 · 1 评论 -
Paper:《NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion,女娲:用于神经视觉世界创造的视觉》翻译与解读
Paper:《NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion,女娲:用于神经视觉世界创造的视觉》翻译与解读目录《NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion》翻译与解读Abstract1. Introduction2. Related Works2.1. Visual AutoRegressive Models2.2. Visu原创 2022-01-06 21:30:01 · 5432 阅读 · 0 评论 -
Paper:《Hidden Technical Debt in Machine Learning Systems—机器学习系统中隐藏的技术债》翻译与解读
Paper:《Hidden Technical Debt in Machine Learning Systems—机器学习系统中隐藏的技术债》翻译与解读目录《Hidden Technical Debt in Machine Learning Systems》翻译与解读《Hidden Technical Debt in Machine Learning Systems》翻译与解读链接 https://papers.nips.cc/paper/2015/f原创 2018-03-31 11:35:37 · 11995 阅读 · 1 评论 -
CV之STN:《Spatial Transformer Networks空间变换网络》的翻译与解读
CV之STN:《Spatial Transformer Networks空间变换网络》的翻译与解读目录《Spatial Transformer Networks》的翻译与解读Abstract1 Introduction 2 Related Work 3 Spatial Transformers 4 Experiments 5 Conclusion《Spatial Transformer Networks》的翻译与解读原创 2021-02-24 23:47:47 · 5036 阅读 · 0 评论 -
Paper:《CatBoost: unbiased boosting with categorical features》的翻译与解读
Paper:《CatBoost: unbiased boosting with categorical features》的翻译与解读目录《CatBoost: unbiased boosting with categorical features》的翻译与解读Abstract1 Introduction2 Background3 Categorical features3.1 Related work on categorical feature3.2 Ta...原创 2021-01-10 00:10:52 · 4565 阅读 · 1 评论 -
Paper:《A Few Useful Things to Know About Machine Learning—关于机器学习的一些有用的知识》翻译与解读
Paper:《A Few Useful Things to Know About Machine Learning—关于机器学习的一些有用的知识》翻译与解读目录《A Few Useful Things to Know About Machine Learning》翻译与解读了解机器学习的一些有用的东西key insights重要见解Learning = Representation + Evaluation + Optimization 学习=表示+评估+优化I原创 2020-12-27 23:53:46 · 6402 阅读 · 2 评论 -
Paper:可解释性之SHAP之《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译
Paper:可解释性之SHAP之《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方法》论文解读与翻译目录《A Unified Approach to Interpreting Model Predictions》论文解读与翻译相关文章Paper:《A Unified Approach to Interpreting Model Predictions—解释模型预测的统一方原创 2020-05-09 20:03:50 · 8561 阅读 · 2 评论 -
Paper之IEEE&RSJ:2009年~2019年机器人技术(IEEE机器人和自动化国际会议&RSJ智能机器人与系统国际会议&机器人技术:科学与系统&机器人学报)历年最佳论文简介及其解读
Paper之IEEE&RSJ:2009年~2019年机器人技术(IEEE机器人和自动化国际会议&RSJ智能机器人与系统国际会议&机器人技术:科学与系统&机器人学报)历年最佳论文简介及其解读目录会议期刊来源论文介绍Robotic Pick and Place of Novel Objects in Clutter with Multi Affordance Grasping and Cross Domain Image Matching通过多 ...原创 2020-11-07 17:48:11 · 4378 阅读 · 0 评论 -
Paper之ACMCH&UIST&ICUC&IJHC:2009年~2019年人机交互技术(计算系统人为因素会议&用户界面软件&计算国际会议&国际人类计算机研究&人机交互的交易)历年最佳论文简介及其解读
Paper之CVPR&UIST&ICUC&IJHC&TCHI:2009年~2019年人机交互技术(ACM CHI计算系统人为因素会议&ACM用户界面软件和技术研讨会&ACM泛在计算国际会议&国际人类计算机研究杂志&ACM关于人机交互的交易)历年最佳论文简介及其解读Paper之CVPR&UIST&ICUC&IJHC:2009年~2019年人机交互技术(计算系统人为因素会议&用户界面软件&计算国际会议&a原创 2020-11-06 22:33:24 · 4724 阅读 · 1 评论 -
Paper/CV之IA:《First Order Motion Model for Image Animation图像动画的一阶运动模型》翻译与解读
图像动画包括生成视频序列,以便根据驱动视频的运动使源图像中的对象动画。我们的框架解决了这个问题,没有使用任何注释或关于动画特定对象的先验信息。一旦在一组描述同一类别对象(例如人脸、人体)的视频上进行训练,我们的方法就可以应用于该类中的任何对象。为了实现这一点,我们解耦外观表面和运动信息使用一个自监督的公式。为了支持复杂的运动,我们使用一种由一组学习过的关键点及其局部仿射变换组成的表示法。生成器网络对目标运动中产生的遮挡进行建模,并将从源图像中提取的外观与从驾驶视频中提取的运动相结合。原创 2020-08-30 15:48:52 · 8689 阅读 · 1 评论 -
NLP之GPT-3:《 Language Models are Few-Shot Learners》的翻译与解读
NLP之GPT-3:《 Language Models are Few-Shot Learners》的翻译与解读目录相关文章《GPT-3: Language Models are Few-Shot Learners》的翻译与解读Abstract 摘要1 Introduction 介绍2 Approach方法3 Results 结果4 Measuring and Preventing Memorization Of Ben原创 2020-07-29 22:37:08 · 10826 阅读 · 1 评论 -
Paper:《Graph Neural Networks: A Review of Methods and Applications—图神经网络:方法与应用综述》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读《Graph Neural Networks: A Review of Methods and Applications》翻译与解读原论文地址:https://arxiv.org/pdf/2007.06559.pdf...原创 2020-07-18 12:20:27 · 8017 阅读 · 2 评论 -
Paper:《Graph Neural Networks: A Review of Methods and Applications—图神经网络:方法与应用综述》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications—图神经网络:方法与应用综述》翻译与解读目录《Graph Neural Networks: A Review of Methods and Applications》翻译与解读Abstract1、Introduction介绍2、General design pipeline of GNNs—GNN通用设计流水线2.1、Find graph structure—查找图结构2.2、原创 2020-01-08 10:15:19 · 7876 阅读 · 1 评论