循环神经网络实践—文本分类

本文介绍了如何使用循环神经网络(RNN)中的LSTM进行文本分类,特别是针对电影评论的情感分析。通过Tensorflow加载IMDB数据集,进行数据预处理,构建包含双向LSTM的模型,训练并优化模型,最终实现对评论的正负面情绪预测。

前言

本文介绍循环神经网络的案例,通过搭建和训练一个模型,来对电影评论进行“文本分类”;将影评分为积极消极两类;是一个二分类问题。

使用到网络电影数据库的 IMDB 数据集,包含 50,000 条影评文本,所有评论都具有正面负面情绪,这是二元情绪分类的数据集。

目录

思路流程

一、导入数据集

二、数据预处理

三、创建模型

四、训练模型

五、评价模型

 六、使用模型

 七、优化模型


思路流程

  1. 导入数据集
  2. 探索集数据,并进行数据预处理
  3. 构建模型(搭建神经网络、编译模型)
  4. 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)  
  5. 使用训练好的模型
  6. 优化模型、重新构建模型、训练模型、使用模型

一、导入数据集

IMDB数据集在 Tensorflow数据集 获取,划分训练集和测试集。

dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True,
                          as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']

 dataset 包含所有评论都具有 正面 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值