前言
本文介绍循环神经网络的案例,通过搭建和训练一个模型,来对电影评论进行“文本分类”;将影评分为积极或消极两类;是一个二分类问题。
使用到网络电影数据库的 IMDB 数据集,包含 50,000 条影评文本,所有评论都具有正面或负面情绪,这是二元情绪分类的数据集。
目录
思路流程
- 导入数据集
- 探索集数据,并进行数据预处理
- 构建模型(搭建神经网络、编译模型)
- 训练模型(把数据输入模型、评估准确性、作出预测、验证预测)
- 使用训练好的模型
- 优化模型、重新构建模型、训练模型、使用模型
一、导入数据集
IMDB数据集在 Tensorflow数据集 获取,划分训练集和测试集。
dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True,
as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']
dataset 包含所有评论都具有 正面 或
本文介绍了如何使用循环神经网络(RNN)中的LSTM进行文本分类,特别是针对电影评论的情感分析。通过Tensorflow加载IMDB数据集,进行数据预处理,构建包含双向LSTM的模型,训练并优化模型,最终实现对评论的正负面情绪预测。
订阅专栏 解锁全文
7915

被折叠的 条评论
为什么被折叠?



