按照常理来说,最大的应该是n, n-1, n-2这三个数,如果这三个数恰好互质,那再好不过。然而恰好当n为奇数时,这三个数互质。下面来解释下为什么。首先这三个数时连续的三个数。也就是n,n-1,n-2。因为n是奇数,所以奇偶奇不可能有2这个因数。那再看3,这三个连续的数最大相差的是2,然而我们知道如果n能被3整除那n+1,n+2(减去是一样的)就不能因为没加够一个3.同理如果n能被4整除那么n+1,n+2,n+3也都不能被4整除,因为没加够一个4.证毕。
再看若n是偶数,那很自然的想到吧n-2往后挪一个变成奇数n-3就好了。但是这里有个问题,如果n刚好能被3整除的话那么n-3也能。那就还要除去一个3.不划算。那不能挪后面的就把前面的挪一下吧。变成n-1,n-2,n-3。代码如下
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
long long int n;
while (cin>>n)
{
long long int res;
if (n%2) res=(n)*(n-1)*(n-2);
else
{
if (n%3) res=(n-1)*(n)*(n-3);
else res=(n-1)*(n-2)*(n-3);
}
cout<<res<<endl;
}
return 0;
}
---------------------
作者:cug_ddc
来源:CSDN
原文:https://blog.csdn.net/cugsl/article/details/79614907
版权声明:本文为博主原创文章,转载请附上博文链接!