[无人驾驶]三维坐标系转换/无人车外参标定

本文介绍了无人车外参数定标中三维坐标转换的过程,主要涉及激光雷达坐标系到车辆坐标系的转换。通过旋转矩阵R和平移矩阵T来实现坐标转换,其中旋转矩阵R由Z-Y-X顺序的三个旋转构成,平移矩阵T包含三个平移量。外参标定的目标是确定旋转角度和平移量,从而获得精确的坐标变换参数。
摘要由CSDN通过智能技术生成

1、三维坐标系转换

在无人车的外参标定中,各传感器获取的数据在自己的坐标系中,一般要转化到车辆坐标系中,车辆坐标系一般选择惯导坐标系。本文以顶装的激光雷达坐标系与车辆坐标系为例,具体讲述三维坐标转换,坐标示例如下图。图中 O V − X V Y V Z V O_{V}-X_{V}Y_{V}Z_{V} OVXVYVZV为车辆坐标系, O L − X L Y L Z L O_{L}-X_{L}Y_{L}Z_{L} OLXLYLZL为雷达坐标系,每个轴规定的旋转正方向如图。
激光雷达坐标系与车体坐标系

(1)原理
对于每个激光雷达坐标系中的点 P ′ ( x L , y L , z L ) P^{'}(x_{L},y_{L},z_{L}) P(xL,yL,zL),假设其在车辆坐标系中对应的点为 P ( x V , y V , z V ) P(x_{V},y_{V},z_{V}) P(xV,yV,zV),则存在旋转矩阵 R \textbf{R} R和平移矩阵 T \textbf{T} T,将该点从雷达坐标系转换到车辆坐标系。
在这里插入图片描述

(2)旋转矩阵 R \textbf{R} R

定义顺规Z-Y-X(也可以是别的顺序),即先按Z轴旋转 γ \gamma γ,再按Y轴旋转 β \beta β,最后按X轴旋转 α \alpha α,组合三次旋转矩阵求得最终的旋转矩阵为 R = R Z R Y R X \textbf{R}=\textbf{R}_{Z}\textbf{R}_{Y}\textbf{R}_{X} R=RZRYRX

在这里插入图片描述

以按Z轴旋转为例,此时z值保持不变,如上图。对于 O − X Y O-XY OXY中的点 P ( x , y ) P(x,y) P(x,y)转换到 O − X ′ Y ′ O-X^{'}Y^{'} OXY中点 P ′ ( x ′ , y ′ ) P^{'}(x^{'},y^{'}) P(x,y),有 x ′ = O E + C E x^{'}=OE+CE x=OE+CE y ′ = P F − C F y^{'}=PF-CF y=PFCF z ′ = z z^{'}=z z=z,可知
在这里插入图片描述
R Z \textbf{R}_{Z} RZ为:
在这里插入图片描述
同理求得 R Y \textbf{R}_{Y} RY R X \textbf{R}_{X} RX
在这里插入图片描述
进一步可推导旋转矩阵 R \textbf{R} R(这里可以手算一下):
在这里插入图片描述

(3)平移矩阵 T \textbf{T} T
S
综上,外参标定即是求 Δ x \Delta x Δx Δ y \Delta y Δy Δ z \Delta z Δz三个平移量以及 α \alpha α β \beta β γ \gamma γ三个角度,进而求得外参矩阵 R \textbf{R} R T \textbf{T} T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值