delicacies
码龄7年
关注
提问 私信
  • 博客:20,832
    20,832
    总访问量
  • 3
    原创
  • 885,767
    排名
  • 9
    粉丝
  • 0
    铁粉

个人简介:盲目调参法

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-11-30
博客简介:

qq_41224398的博客

查看详细资料
个人成就
  • 获得31次点赞
  • 内容获得8次评论
  • 获得221次收藏
  • 代码片获得1,943次分享
创作历程
  • 3篇
    2019年
成就勋章
TA的专栏
  • 机器学习笔记
    3篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉图像处理
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

试使用matlab的PCA函数对Yale人脸数据进行降维,并观察前20个特征向量对应的图像

学习笔记:PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中:第一个新坐标轴选择是原始数据中方...
原创
发布博客 2019.12.17 ·
5554 阅读 ·
5 点赞 ·
2 评论 ·
48 收藏

机器学习《西瓜书》9.4解答——k-means算法:编程实现k均值算法,设置三组不同的k值、三组不同初始中心点,在西瓜数据集4.0上进行实验比较,并讨论什么样的初始中心有助于得到好结果。

编程实现k均值算法,设置三组不同的k值、三组不同初始中心点,在西瓜数据集4.0上进行实验比较,并讨论什么样的初始中心有助于得到好结果。1.运行结果:(注:图中方块标注的点为选取的初始样本点)k=2时:本次选取的2个初始向量为[[0.243, 0.267], [0.719, 0.103]]共进行61轮共耗时0.10sk=3时:本次选取的3个初始向量为[[0.343, 0.099],...
原创
发布博客 2019.12.02 ·
9120 阅读 ·
16 点赞 ·
5 评论 ·
91 收藏

西瓜书8.3 从网上下载或自己编程实现AdaBoost,以不剪枝决策树为基学习器,在西瓜数据集3.0α上训练一个AdaBoost集成,并与图8.4进行比较.

西瓜书8.3 从网上下载或资金编程实现AdaBoost,以不剪枝决策树为基学习器,在西瓜数据集3.0α上训练一个AdaBoost集成,并与图8.4进行比较.题意分析若基学习器直接采用不剪枝决策树,则基本上训练后的每个决策树分类器都是趋于一致。所以为了保证个体学习器的多样性,应采用单层决策树作为基学习器,即以决策树桩作为弱学习器。AdaBoost核心思想:每学到一个学习器,根据其错误率确定...
原创
发布博客 2019.11.25 ·
6158 阅读 ·
10 点赞 ·
1 评论 ·
83 收藏