数据结构与算法题目集7-42——整型关键字的散列映射

本文介绍了一种使用哈希表解决整型关键字映射问题的方法,通过一个bool数组记录位置是否已被占用,int数组存储数字,强调已存在的数字只需返回其位置即可。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的数据结构与算法题目集代码仓:https://github.com/617076674/Data-structure-and-algorithm-topic-set

原题链接:https://pintia.cn/problem-sets/15/problems/889

题目描述:

知识点:哈希表

思路:用一个bool类型的数组filled标记某个位置是否有值,用一个int型数组nums标记存储数字

注意:输入的数字可能已经在哈希表中,这时候我们只需输出其在哈希表中的位置即可,不必插入

C++代码:

#include<iostream>

using namespace std;

int main(){
	int N, P;
	scanf("%d %d", &N, &P);
	bool filled[P];
	fill(filled, filled + P, false);
	int nums[P];
	for(int i = 0; i < N; 
### PTA英文字典的散列表实现使用方法 在PTA平台上的许多题目中,涉及到了基于散列表(Hash Table)的数据结构设计和应用。以下是关于如何利用散列表实现英文字典的具体分析。 #### 散列表的基本原理 散列表是一种通过哈希函数将关键字映射到存储位置的数据结构[^1]。其核心在于能够快速定位目标数据项的位置,从而提高查询效率。对于英文字典的应用场景而言,通常会将单词作为键值存入散列表中,并记录该单词的相关信息(如频率、定义等)。 #### Python中的字典类型用于实现散列表 Python内置的`dict`类型实际上就是一种高效的散列表实现方式[^2]。它允许开发者以键-值对的形式存储数据,并提供了非常便捷的操作接口: ```python word_dict = {} word_dict["apple"] = 1 # 插入或更新一个条目 count = word_dict.get("apple", 0) # 获取指定键对应的值,默认为0 if "banana" not in word_dict: # 检查某键是否存在 word_dict["banana"] = 1 # 如果不存在则初始化计数值 ``` 上述代码片段展示了如何用Python字典模拟简单的词频统计功能。其中包含了插入新词条以及检查已有词条的过程。 #### 哈希冲突处理机制 即使采用了优秀的哈希算法,在实际运行过程中仍可能出现不同的关键词被分配至相同槽位的情况——即所谓的“哈希碰撞”。针对这一问题,常见的解决方案包括链地址法和开放定址法两种策略[^5]。前者是在每个桶内维护一条链接清单;后者则是当发生冲突时按照特定规则探查下一个可用空间直至成功安置为止。 具体来说,在某些PTA练习题里提到过采用平方探测再散列技术来应对这种情况。这意味着每当遇到占用状态的目标单元格i处时,程序将会依次尝试访问(i±j&sup2;)%m这样的候选位置直到找到空闲区域或者遍历完整个表体结束为止(j表示当前试探轮次编号,m代表总槽数量)。 #### 应用实例:树种统计 在一个具体的案例中,我们需要统计森林区域内各种树木类型的数量分布情况。给定了总数上限不超过十万棵植物样本之后逐一向系统提交它们各自的类别标签字符串形式表达式[^3]。此时可以考虑构建一个大型hash table 来高效完成这项任务: ```python from collections import defaultdict def count_tree_species(n, species_list): tree_count = defaultdict(int) for specie in species_list[:n]: normalized_specie = ''.join(filter(str.isalnum, specie.lower())) tree_count[normalized_specie] += 1 result = [] total_trees = sum(tree_count.values()) for key in sorted(tree_count.keys()): percentage = round((tree_count[key]/total_trees)*100, 4) result.append(f"{key} {percentage}") return "\n".join(result) # Example Usage: species_input = ["Oak Tree", "Pine Tree", "oak TREE ", "pine tree"] print(count_tree_species(len(species_input), species_input)) ``` 以上脚本首先创建了一个默认初始值为零的整型字典用来累积各类别的出现次数。接着通过对原始输入做标准化预处理去除无关字符并将字母统一转换成小写形式以便于后续比较判定相等问题。最后按字母顺序排列输出各物种所占比例结果。 #### 总结 综上所述,无论是基础理论还是实践操作层面来看,运用好散列表都能极大地简化诸如英文字典这类需要频繁执行查找动作的任务难度级别。同时也要注意合理规划容量大小预防过度填充引发性能下降现象的发生几率增加风险。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值