100!的末尾有多少个零?
1.问题分析与算法设计
可以设想:先求出100!的值,然后数一下末尾有多少个零。事实上,与“高次方数的尾数”一样,由于计算机所能表示的整数范围有限,这是不可能的。
为了解决这个问题,必须首先从数学上分析在100!结果值得末尾产生零的条件。不难看出:一个整数若含有一个因子5则必然会在求100!时产生一个零。因此问题转化为求1到100这100个整数中包含了多少个因子5。若整数N能被25整除,则N包含2个因子5;若整数N能被5整除,则N包含了一个因子5。
2.程序说明与注释
#include <stdio.h>
void main()
{
int a,count = 0;
for(a=5;a<=100;a+=5) //循环从5开始,以5的倍数为步长,考察整数
{
count++; //若为5的倍数,计数器+1
if(!(a%25))
{
count++; //若为25的倍数,则计数器再+1
}
}
printf("The number of 0 in the end of 100! is:%d.\n",count);//打印结果
}
3.运行结果
24
4.问题的进一步讨论
本题的求解程序是正确的,但存在明显的缺点。程序中判断整数N包含多少个因子5的方法是与题目中100有关的,若题目中的100改为1000,则就要修改程序中因子5的数目的算法了。