小A的数学题(莫比乌斯裸题)

链接:https://ac.nowcoder.com/acm/contest/549/J
来源:牛客网
 

题目描述

小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j)2,但是他发现他并不太会计算这个式子,你可以告诉他这个结果吗,答案可能会比较大,请模上1000000007。

2019 7 9更新:最近学了整除分块套莫比乌斯,把这个题重新写了一下

输入描述:

一行两个正整数n,m一行两个正整数n,m

输出描述:

一行一个整数表示输出结果一行一个整数表示输出结果

示例1

输入

复制

2 2

输出

复制

7

备注:

1≤n,m≤1e6
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=1e6+10;
const int maxn=1e6+5;
int isPrime[N],miu[N],prime[N];
int tot;
void getmiu(){
	memset(isPrime,1,sizeof(isPrime));
    miu[1]=1;
    for(ll i=2;i<=maxn;i++){
        if(isPrime[i]) prime[++tot]=i,miu[i]=-1;
        for(ll j=1;j<=tot;j++){
            if(i*prime[j]>maxn) break;
            isPrime[i*prime[j]]=false;
            if(i%prime[j]==0){
                miu[i*prime[j]]=0;
                break;
            }else miu[i*prime[j]]=-1*miu[i];
        }
    }
}

int main()
{
	getmiu();
	int n,m;
	cin>>n>>m;
	int k=min(n,m);
	ll ans=0;
	for(int i=1;i<=k;i++)
	for(int j=i;j<=k;j+=i)
	ans=(ans+1ll*i*i*miu[j/i]*(n/j)*(m/j))%mod;
	printf("%lld\n",ans);
}

 法2:分块+莫比乌斯反演:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=1e6+10;
const int maxn=1e6+5;
int isPrime[N],miu[N],prime[N];
ll sum[N],ss[N];
int tot;
void getmiu(){
	memset(isPrime,1,sizeof(isPrime));
    miu[1]=1;
    for(ll i=2;i<=maxn;i++){
        if(isPrime[i]) prime[++tot]=i,miu[i]=-1;
        for(ll j=1;j<=tot;j++){
            if(i*prime[j]>maxn) break;
            isPrime[i*prime[j]]=false;
            if(i%prime[j]==0){
                miu[i*prime[j]]=0;
                break;
            }else miu[i*prime[j]]=-1*miu[i];
        }
    }
    for(int i=1;i<N;++i){
    	sum[i]=sum[i-1]+miu[i];
	}
}
ll solve(ll n,ll m){
	if(n>m) swap(n,m);
	ll res=0;
	for(int i=1,pos=0;i<=n;i=pos+1){
		pos=min(n/(n/i),m/(m/i));
		res=(res+(sum[pos]-sum[i-1])*(n/i)%mod*(m/i)%mod)%mod;
	}
	return res%mod;
} 
int main()
{
	getmiu();
	int n,m;
	cin>>n>>m;
	int k=min(n,m);
	ll ans=0;
	for(int i=1;i<=k;i++)
	{
		ans=(ans+(1ll*i*i%mod*solve(n/i,m/i))%mod)%mod;
	}
	printf("%lld\n",ans);
}

运行速度比较::

第一行是加了分块的。。。。。额,好像效果不明显呀,还慢了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙大学ccsu_deer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值