链接:https://ac.nowcoder.com/acm/contest/549/J
来源:牛客网
题目描述
小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j)2,但是他发现他并不太会计算这个式子,你可以告诉他这个结果吗,答案可能会比较大,请模上1000000007。
2019 7 9更新:最近学了整除分块套莫比乌斯,把这个题重新写了一下
输入描述:
一行两个正整数n,m一行两个正整数n,m
输出描述:
一行一个整数表示输出结果一行一个整数表示输出结果
示例1
输入
复制
2 2
输出
复制
7
备注:
1≤n,m≤1e6
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=1e6+10;
const int maxn=1e6+5;
int isPrime[N],miu[N],prime[N];
int tot;
void getmiu(){
memset(isPrime,1,sizeof(isPrime));
miu[1]=1;
for(ll i=2;i<=maxn;i++){
if(isPrime[i]) prime[++tot]=i,miu[i]=-1;
for(ll j=1;j<=tot;j++){
if(i*prime[j]>maxn) break;
isPrime[i*prime[j]]=false;
if(i%prime[j]==0){
miu[i*prime[j]]=0;
break;
}else miu[i*prime[j]]=-1*miu[i];
}
}
}
int main()
{
getmiu();
int n,m;
cin>>n>>m;
int k=min(n,m);
ll ans=0;
for(int i=1;i<=k;i++)
for(int j=i;j<=k;j+=i)
ans=(ans+1ll*i*i*miu[j/i]*(n/j)*(m/j))%mod;
printf("%lld\n",ans);
}
法2:分块+莫比乌斯反演:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=1e6+10;
const int maxn=1e6+5;
int isPrime[N],miu[N],prime[N];
ll sum[N],ss[N];
int tot;
void getmiu(){
memset(isPrime,1,sizeof(isPrime));
miu[1]=1;
for(ll i=2;i<=maxn;i++){
if(isPrime[i]) prime[++tot]=i,miu[i]=-1;
for(ll j=1;j<=tot;j++){
if(i*prime[j]>maxn) break;
isPrime[i*prime[j]]=false;
if(i%prime[j]==0){
miu[i*prime[j]]=0;
break;
}else miu[i*prime[j]]=-1*miu[i];
}
}
for(int i=1;i<N;++i){
sum[i]=sum[i-1]+miu[i];
}
}
ll solve(ll n,ll m){
if(n>m) swap(n,m);
ll res=0;
for(int i=1,pos=0;i<=n;i=pos+1){
pos=min(n/(n/i),m/(m/i));
res=(res+(sum[pos]-sum[i-1])*(n/i)%mod*(m/i)%mod)%mod;
}
return res%mod;
}
int main()
{
getmiu();
int n,m;
cin>>n>>m;
int k=min(n,m);
ll ans=0;
for(int i=1;i<=k;i++)
{
ans=(ans+(1ll*i*i%mod*solve(n/i,m/i))%mod)%mod;
}
printf("%lld\n",ans);
}
运行速度比较::
第一行是加了分块的。。。。。额,好像效果不明显呀,还慢了。