给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。
连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。
请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。
示例 1:

输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]] 输出:20 解释:我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。 注意到任意两个点之间只有唯一一条路径互相到达。
提示:
1 <= points.length <= 1000-106 <= xi, yi <= 106- 所有点
(xi, yi)两两不同。
题解:
class Solution {
public:
int minCostConnectPoints(vector<vector<int>>& points) {
int n=points.size(),res=0,gra[1005][1005],dis[1005],flag[1005]={0}; // flag[i]标记节点i是否被加入到生成树
// memset 按字节进行初始化,int有四个字节,每个字节被初始化为0x3f,
// 所以最终的int变量四个字节均被初始化为0x3f, 即0x3f3f3f3f
memset(dis,0x3f,sizeof dis);
// 初始化距离矩阵 grap[i][j]表示节点i,j之间的距离
for(int i=0;i<points.size();i++){
for(int j=0;j<points.size();j++){
gra[i][j]=abs(points[i][0]-points[j][0])+abs(points[i][1]-points[j][1]);
}
}
// travel n times:以下的循环体应该这样理解:
//将节点分为两部分,第一部分节点U为生成树中的节点,第二部分节点为V, 表示未加入到生成树的节点,
//prim算法每次从节点集U和V所能构成的边中选择V中到节点集合U中距离最小的点v1,并并入生成树U. 下面的代码使用dis一维数组记录集合V中节点v到U的最小距离:dis[v]
for(int i=0;i<n;i++){
int t=-1;
// 在集合V中(即满足flag[j] = 0 的节点j)找到和集合U距离最近的节点 t 加入 集合 U
for(int j=0;j<n;j++){
if(!flag[j]&&(t==-1||dis[t]>dis[j])) t=j;
}
if(i) res+=dis[t];
// 更新集合V, V' = V - t
flag[t]=1;
// 重新计算新集合V'的节点到生成树U的最小距离
for(int j=0;j<n;j++) if(!flag[j]) dis[j]=min(dis[j],gra[t][j]);
}
return res;
}
};
我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。
417

被折叠的 条评论
为什么被折叠?



