生成树的简洁实现c++(Leetcode 1584. 连接所有点的最小费用)

Leecode原题链接

给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。

连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

 

示例 1:

输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:

我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。

提示:

  • 1 <= points.length <= 1000
  • -106 <= xi, yi <= 106
  • 所有点 (xi, yi) 两两不同。

题解:

class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        int n=points.size(),res=0,gra[1005][1005],dis[1005],flag[1005]={0}; // flag[i]标记节点i是否被加入到生成树
        // memset 按字节进行初始化,int有四个字节,每个字节被初始化为0x3f, 
        // 所以最终的int变量四个字节均被初始化为0x3f, 即0x3f3f3f3f
        memset(dis,0x3f,sizeof dis);
        // 初始化距离矩阵 grap[i][j]表示节点i,j之间的距离
        for(int i=0;i<points.size();i++){
            for(int j=0;j<points.size();j++){
                gra[i][j]=abs(points[i][0]-points[j][0])+abs(points[i][1]-points[j][1]);
            }
        }
        // travel n times:以下的循环体应该这样理解:
        //将节点分为两部分,第一部分节点U为生成树中的节点,第二部分节点为V, 表示未加入到生成树的节点,
        //prim算法每次从节点集U和V所能构成的边中选择V中到节点集合U中距离最小的点v1,并并入生成树U. 下面的代码使用dis一维数组记录集合V中节点v到U的最小距离:dis[v]
        for(int i=0;i<n;i++){
            int t=-1;
            // 在集合V中(即满足flag[j] = 0 的节点j)找到和集合U距离最近的节点 t 加入 集合 U
            for(int j=0;j<n;j++){
                if(!flag[j]&&(t==-1||dis[t]>dis[j])) t=j;
            }
            if(i) res+=dis[t];
            // 更新集合V, V' = V - t
            flag[t]=1;
            // 重新计算新集合V'的节点到生成树U的最小距离
            for(int j=0;j<n;j++) if(!flag[j]) dis[j]=min(dis[j],gra[t][j]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值