完全背包(零钱兑换,for循环对求组合数和排列数的对应关系)

完全背包相比于0、1背包最大的区别就是每个物品的数量不限。原始的完全背包问题为:在每个物品数量不限的情况下,背包能容纳的最大物品价值。常见的变体有求选取物品的组合数和排列数(装满背包有几种方法),这时候先遍历物品还是先遍历容量就有很大的讲究

  1. 先遍历物品,物品是顺序遍历的,放入结果的顺序一定,所以此时求得是组合数(较少的)
  2. 先遍历背包,意味着物品会多次被遍历,所以物品放入的顺序实际上是一种排列,所以此时求的是排列数(较多)

下面以Leetcode 518. 零钱兑换 II 举例,有需要自行跳转到Leetcode查看题目。

下面的代码进行了扩展,能输出解决方案,这里你可以方便的实验,将for循环调整一下顺序,可以看到打印的输出有什么不同

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        using PathList = vector<vector<int>>;
        int n  = coins.size();
        // dp[j]表示填满大小为j的背包的组合数
        vector<int>dp(amount + 1, 0);
        // dp[j] = dp[j] + dp[j-coins[i]];
        dp[0] = 1;
        vector<PathList> path(amount + 1);
        path[0].push_back({});
        for(int i = 0; i < n; i++){
            for(int j = coins[i]; j <= amount; j++){
                // dp[j] += dp[j-coins[i]];
                dp[j] = dp[j] + dp[j-coins[i]]; // 当前方案dp[j] + 方案[j-coins[i]].push_back(coins[i])
               
                PathList prev = path[j-coins[i]];
                for(auto & path : prev){
                    path.push_back(coins[i]);
                }
                path[j].insert(path[j].end(), prev.begin(), prev.end());
            }
        } 
        int i = 0;
        for(auto& L : path.back()){
            for(auto ele : L){
                cout << ele  << "+";
            }
            cout << "\b=" << amount << endl; 
        }
        return dp[amount];

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值