机器学习中L1正则化和L2正则化

深度学习中的归一化(normalization)和正则化(regularization)_qq_26697045的博客-CSDN博客_权重归一化

1.L1和L2的区别

在机器学习中:

 - L1 regularization 是指向量中各个元素绝对值之和,通常表述为\left \| Wi \right \|_{1},线性回归中使用L1正则的模型也叫Lasso regularization
 - L2 regularization 指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为\left ( \left \| Wi \right \|_{2} \right )^{2},线性回归中使用L2正则的模型又叫岭回归(Ringe regularization)。

也就是:

  • L1范数: 为x向量各个元素绝对值之和。
  • L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数
  • Lp范数: 为x向量各个元素绝对值p次方和的1/p次方.

下图为p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面

在这里插入图片描述

2.参数正则化作用

  • L1: 为模型加入先验, 简化模型, 使权值稀疏,由于权值的稀疏,从而过滤掉一些无用特征,防止过拟合
  • L2: 根据L2的特性,它会使得权值减小,即使平滑权值,一定程度上也能和L1一样起到简化模型,加速训练的作用,同时可防止模型过拟合

3.深度学习中的正则化

我们所谓的正则化,就是在原来 Loss Function 的基础上,加了一些正则化项,或者叫做模型复杂度惩罚项。以我们的线性回归为例子。

上图中的黄色圆点为我们训练的数据,使用黄色曲线可以很好的拟合这些点,但是会形成过拟合。相对来说,蓝色的实线才更符合实际。

具体的运算可以从以下三方面来看:

 从梯度角度来看,L1使得某些W的值变为0,从而满足了前面的例子,把X^{^{2}}X^{3}前的系数变成了0,从而防止过拟合。

更据上面三种方式的推到可以得出:L1会使得权重稀疏,而L2会使得权值平滑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值