格密码教程(三):基础域概念,体积等;阿达马不等式,行列式

本文深入介绍了格密码的基础概念,包括格的基础域及其重要性质。通过定义和实例展示了如何将任何向量表示为基础域和格的线性组合,并证明了这种表示的唯一性。接着,文章详细解释了阿达马不等式,说明了当基向量接近正交时,格的行列式达到最大。最后,探讨了行列式的计算方法,强调了行列式作为格不变量的重要性。
摘要由CSDN通过智能技术生成

格类似于向量空间,只是它是由整数系数的基向量的所有线性组合生成的,而不是使用任意的实系数。可以将格看作是 R m R^m R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

密码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值