格密码教程(六):高斯二维格规约,解决SVP问题

本文深入探讨了在二维格密码中,如何使用高斯格规约算法解决最短向量问题(SVP)。通过交替减去基向量的整数倍,最终找到格中最短非零向量。详细介绍了算法过程,并通过一个实例展示了算法的应用,揭示了算法如何确保找到角度满足特定范围的基向量。
摘要由CSDN通过智能技术生成

前面文章也看到了好的基对算法结果有很大影响,在2维格中寻找最优基的算法基本上来源于高斯的原因。基本的想法是从一个基向量中交替减去另一个基向量的倍数,直到不可能进一步改进。
假设 L ⊂ R 2 L⊂R^2 L

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

密码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值