single-cell RNA-seq-Course学习之introduction to single-cell RNA seq

第二章 介绍单细胞RNA序列

2.1 RNA序列块

  • 在00年代后期取得了重大突破(取代了微阵列),并在此后得到广泛应用
  • 测量大量输入细胞中每个基因的平均表达水平
  • 对比较转录组学有用,例如 来自不同物种的相同组织的样品
  • 研究异构系统的能力不足,例如: 早期发育研究,复杂组织(脑)
  • 不提供对基因表达的随机性的见解

2.2 单细胞RNA序列

  • 一项新技术,首次出版(Tang et al。,2009)
  • 直到2014年,当新的协议和较低的测序成本使其更容易获得时,才获得广泛的普及
  • 测量每个细胞群中每个基因的表达水平的分布
  • 允许研究新的生物学问题,其中转录组的细胞特异性变化是重要的,例如,细胞类型鉴定,细胞反应的异质性,基因表达的随机性,跨细胞的基因调控网络的推断。
  • 数据集范围从10^2到10^6个单元格,并且每年都会增加
  • 目前使用了几种不同的协议,例如SMART-seq2(Picelli等,2013),CELL-seq(Hashimshony等,2012)和Drop-seq(Macosko等,2015)
  • 还有商业平台,包括Fluidigm C1,Wafergen ICELL8和10X Genomics Chromium
  • 可以使用来自大量RNA-seq的几种计算分析方法
  • 在大多数情况下,计算分析需要调整现有方法或开发新方法

2.3 工作流程

      总体而言,实验性scRNA-seq方案类似于用于大量RNA-seq的方法。 我们将在下一章讨论一些最常用的方法。    

                                               

2.4 计算分析

        本课程涉及从scRNA-seq实验获得的数据的计算分析。
        对于任何高吞吐量测序数据,第一步(黄色)是通用的。 后续步骤(橙色)需要混合现有的RNASeq分析方法和新方法来解决scRNASeq的技术差异。
        最后,应使用专为scRNASeq开发的方法分析生物学解释。

        有几种可用的scRNA-seq分析评论,包括(Stegle等,2015)。

  • Falco是云上的单细胞RNA-seq处理框架。
  • SCONE(标准化表达的单细胞概述),用于单细胞RNA-seq数据质量控制和标准化的软件包。
  • Seurat是一种R包,专为QC,分析和探索单细胞RNA-seq数据而设计。
  • ASAP(自动单细胞分析管道)是一种基于网络的交互式单细胞分析平台。

                                                           

2.5 挑战

       大量和单细胞RNA-seq之间的主要区别在于每个测序文库代表单个细胞,而不是细胞群。 因此,必须非常注意比较来自不同细胞(测序文库)的结果。 文库间的主要差异来源是:

  • 扩增(高达100万倍)
  • 基因'dropouts',其中在一个细胞中以中等表达水平观察到基因,但在另一个细胞中未检测到此基因情况(Kharchenko等,2014)。

       在两种情况下,由于RNA仅来自一个细胞,因此由于转录物的起始量低而引入差异。 提高转录物捕获效率和减少扩增偏差是目前活跃的研究领域。 但是,正如我们将在本课程中看到的那样,通过适当的规范化和校正可以减轻其中的一些问题。

2.6 实验方法

       scRNA-seq的新方法和方案的开发目前是一个非常活跃的研究领域,并且在过去几年中已经发表了几种方案。 一份非全面的清单包括:

  • CEL-seq (Hashimshony et al., 2012)
  • CEL-seq2 (Hashimshony et al., 2016)
  • Drop-seq (Macosko et al., 2015)
  • InDrop-seq (Klein et al., 2015)
  • MARS-seq (Jaitin et al., 2014)
  • SCRB-seq (Soumillon et al., 2014)
  • Seq-well (Gierahn et al., 2017)
  • Smart-seq (Picelli et al., 2014)
  • Smart-seq2 (Picelli et al., 2014)
  • SMARTer
  • STRT-seq (Islam et al., 2013)

      这些方法可以用不同的方式分类,但最重要的两个方面是量化(quantification )和捕获(capture)。

      对于量化,有两种类型,全长基于标签。 前者试图获得每个转录本的统一读取覆盖率。 相比之下,基于标签的方案仅捕获每个RNA的5'或3'末端。 量化方法的选择对于数据用于何种类型的分析具有重要意义。 从理论上讲,全长协议应该提供转录本的均匀覆盖,但正如我们将要看到的,覆盖范围通常存在偏差。 基于标签的协议的主要优点是它们可以与独特的分子标识符(UMI)结合使用,这有助于提高量化效果(见第4.6章)。 另一方面,限于转录本的一端可能会降低可映射性,并且还使得区分不同同种型变得更加困难(Archer等,2016)。

       用于捕获的策略确定吞吐量,如何选择细胞以及除了可以获得的测序之外还有哪种附加信息。 三种最广泛使用的选项是基于微孔,微流体和液滴的选择。

       对于基于良好的平台,使用例如移液管或激光捕获分离细胞并置于微流体孔中。 基于良好的方法的一个优点是它们可以与荧光激活细胞分选(FACS)组合,使得可以基于表面标记选择细胞。 因此,当人们想要分离特定的细胞子集用于测序时,该策略非常有用。 另一个优点是可以拍摄细胞的照片。 该图像提供了另外的模态,并且特别有用的应用是识别包含受损细胞或双峰的孔。 这些方法的主要缺点是它们通常是低通量的并且每个单元所需的工作量可能相当大。

       微流体平台,例如Fluidigm'C1,提供了更加集成的系统,用于捕获细胞和进行文库制备所必需的反应。 因此,它们提供比基于微孔的平台更高的吞吐量。 通常,在微流体平台中仅捕获约10%的细胞,因此如果处理稀有细胞类型或非常少量的输入则它们是不合适的。 此外,芯片相对昂贵,但由于反应可以以较小的体积进行,因此可以节省试剂。

       基于液滴的方法背后的想法是将每个单独的细胞与珠子一起封装在纳升液滴内。 珠子装载构建文库所需的酶。 特别地,每个珠子包含独特的条形码,其附着于源自该细胞的所有读数。 因此,可以合并所有液滴,一起测序,并且随后可以基于条形码将读数分配给原始细胞。 Droplet平台通常具有最高的吞吐量,因为库准备成本约为0.05美元/单元。 相反,测序成本通常成为限制因素,典型实验覆盖率低,只检测到几千种不同的转录本。

2.7 用什么平台来做实验呢?

       最合适的平台取决于手头的生物学问题。 例如,如果人们对表征组织的组成感兴趣,那么将允许捕获非常大量细胞的基于液滴的方法可能是最合适的。 另一方面,如果人们对表征具有已知表面标记的稀有细胞群有兴趣,那么最好使用FACS进行富集,然后对较少数量的细胞进行测序。

       显然,如果有兴趣研究不同的同种型,那么全长转录物定量将更合适,因为标记的方案更加有限。 相比之下,UMI只能与标记协议一起使用,它们可以促进基因水平的量化。

       最近Enard小组的两项研究(Ziegenhain等,2017)和Teichmann小组(Svensson等,2017)比较了几种不同的方案。 在他们的研究中,Ziegenhain等人在同一小鼠胚胎干细胞样本(mESCs)上比较了五种不同的方案。 通过控制细胞数量和测序深度,作者能够直接比较不同方案的灵敏度,噪声水平和成本。 他们的结论的一个例子如下图所示,其中显示了不同方法检测到的基因数量(对于给定的检测阈值)。正如您所看到的,drop-seq和Smart-seq2之间几乎有两倍的差异。表明方案的选择可能对研究产生重大影响。

                                                  

       Svensson等采用了一种不同的方法,通过使用已知浓度的合成转录物(加标,后来更多关于这些)来测量不同方案的准确性和灵敏度。 比较广泛的研究,他们还报告了协议之间的实质性差异。

       随着协议的开发和用于量化技术噪声的计算方法的改进,未来的研究很可能有助于我们进一步深入了解不同方法的优势。这些比较研究不仅有助于研究人员决定使用哪种方案。 ,但也用于开发新方法,因为基准测试可以确定哪些策略是最有用的策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>