承钺
码龄7年
关注
提问 私信
  • 博客:4,096
    4,096
    总访问量
  • 6
    原创
  • 1,864,210
    排名
  • 252
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2017-12-18
博客简介:

孤独的猫

博客描述:
只想认真学习,安慰自己
查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得1次评论
  • 获得19次收藏
创作历程
  • 1篇
    2023年
  • 5篇
    2020年
成就勋章
TA的专栏
  • 论文学习笔记
    1篇
  • diffusion model
    1篇
  • 机器学习
    1篇
  • 算法学习
  • 零次学习
  • python
    2篇
  • Pytorch
    2篇
  • numpy学习笔记
    1篇
  • os库
    1篇
  • 卷积神经网络基础基础
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models

联合CLIP和Diffusion的开集语义分割https://img-blog.csdnimg.cn/77b4e88f96c742109e5796053affffb1.png框架
原创
发布博客 2023.03.09 ·
1877 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

机器学习之PCA介绍与基于sklearn的简单实现说明

前言最近实现了一个简单的pca+svm模型, 同时参考了一些关于pca和svm的比较优秀的博客介绍,为了加深自己的理解,记录下来自己的学习历程。pca算法介绍通过阅读优秀的博客 PCA介绍, 自己对主成分分析算法有了较为深刻的理解。PCA全称是 Principal Component Analysis, 该算法的作用是对高维的向量数据进行降维,例如对于 m×nm \times nm×n 的矩阵 x\mathbf{x}x, 该矩阵含有 nnn 个 mmm 维的列向量,那么通过主成分分析,我们可以将每个
原创
发布博客 2020.07.22 ·
298 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

python几个常用的库的安装

最近,毕设的模型代码需要需要几个库,该文记录这些库的安装方法。tqdm pip install tqdmskimage pip install scikit-imagepandas pip install pandas
原创
发布博客 2020.04.12 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python os库函数基础用法

os 库是python语言常用的库,本篇博客主要用来记录os库的一些关键函数的用法,以便以后翻看查阅学习,有些地方不够完善的地方望大家指正。os.walk()os.walk()主要目的是遍历某文件夹下的所有文件及文件夹。文件夹和文件的区别就不用了说了。函数原型为:os.walk(top, topdown=True, onerror=None, followlinks=False)平时用的较...
原创
发布博客 2020.04.09 ·
348 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Pytorch Conv2d的使用

con2d是pytorch中最经常使用的卷积函数之一,那么有必要对其语法和使用时需要注意的一些细节有所了解。以下内容均参考自 pytroch conv2d官网Conv2d函数原型torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=Tru...
原创
发布博客 2020.03.18 ·
935 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

numpy库函数numpy.newaxis的使用

numpy 以下简称np, np.newaxis的作用是增加原来数组的维度,比如原来是一个二维数组,通过使用np.newaxis可以变成一个三维数组。同理一维数组可以变成二维数组,三维数组可以变成四维。形状为(5,)的一维数组通过增加坐标轴变成二维数组# 示例 # 一维数组变成二维,且增加的坐标轴位置不同import numpy as npimport torch as tpt ...
原创
发布博客 2020.03.12 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏