Linux学习笔记(二)之管道符、重定向、环境变量

接下来就是把多个Linux命令适当地组合到一起,使其协同工作,以便更加高效地处理数据。

1. 输入输出重定向

输入重定向:把文件导入到命令中
输出重定向:把原本要输出到屏幕的数据信息写入到指定文件中

符号作用
命令 < 文件将文件作为命令的标准输入
命令 << 分界符遇见分界符时,停止读入
命令 > 文件清空写入
命令 >> 文件追加写入

具体实例见 笔记一 cat命令

2. 管道命令符

把前一个命令原本要输出到屏幕的标准正常数据当作是后一个命令的标准输入,格式为:

$ 命令A | 命令B

具体实例见 笔记一 tr命令

3. 命令行的通配符

如果我们忘了某些文件的名称,则可以用通配符搞定

通配符含义
*匹配0或多个字符
匹配单个字符
[0-9]匹配0~9之间的单个数字的字符
[abc]匹配a,b,c中的任意一个

联想 笔记一 grep命令

4. 最常用的转义字符

字符作用
\使反斜杠后面的一个变量变为单纯的字符串
’ ’转义其中所有的变量为单纯的字符串
" "保留其中的变量属性,不做转义处理
``把其中的命令执行后返回结果

在这里插入图片描述

5. 重要的环境变量

在Linux系统中,变量名称一般约定为大写的,可以通过变量名提取到对应的变量值。

变量名作用
HOME家目录
SHELLshell解释器名称
HISTSIZE输出的历史命令记录条数
HISTFILESIZE保存的历史命令记录条数
MAIL邮件保存路径
LANG系统语言、语系名称
RANDOM生成一个随机数
PS1bash解释器的提示符
PATH定义解释器搜索用户执行命令的路径
EDITOR用户默认的文本编辑器

在这里插入图片描述

这样的变量不具有全局性,作用范围也有限,可以使用export命令将其提升为全局变量,这样其他用户也能使用它了。

$ export PATH
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值