线段树摘要

看了大牛的线段树讲解,受益匪浅,无奈篇幅太长,自己总结了一下其中比较重要的要点:

摘自:http://blog.csdn.net/yitongjun/article/details/53193724

线段树的存储结构:

线段树是用数组来模拟树形结构,对于每一个节点R ,左子节点为 2*R (一般写作R<<1)右子节点为 2*R+1(一般写作R<<1|1)
然后以1为根节点,所以,整体的统计信息是存在节点1中的。
这么表示的原因看下图就很明白了,左子树的节点标号都是根节点的两倍,右子树的节点标号都是左子树+1:

线段树需要的数组元素个数是:,一般都开4倍空间,比如: int A[n<<2];


递归实现线段树:

#define maxn 100007  //元素总个数  
#define ls l,m,rt<<1  
#define rs m+1,r,rt<<1|1  
int Sum[maxn<<2],Add[maxn<<2];//Sum求和,Add为懒惰标记   
int A[maxn],n;//存原数组数据下标[1,n]   
建树
//PushUp函数更新节点信息 ,这里是求和  
void PushUp(int rt){Sum[rt]=Sum[rt<<1]+Sum[rt<<1|1];}  
//Build函数建树   
void Build(int l,int r,int rt){ //l,r表示当前节点区间,rt表示当前节点编号  
    if(l==r) {//若到达叶节点   
        Sum[rt]=A[l];//储存数组值   
        return;  
    }  
    int m=(l+r)>>1;  
    //左右递归   
    Build(l,m,rt<<1);  
    Build(m+1,r,rt<<1|1);  
    //更新信息   
    PushUp(rt);  
}  

 
点修改
假设A[L]+=C:
void Update(int L,int C,int l,int r,int rt){//l,r表示当前节点区间,rt表示当前节点编号  
    if(l==r){//到叶节点,修改   
        Sum[rt]+=C;  
        return;  
    }  
    int m=(l+r)>>1;  
    //根据条件判断往左子树调用还是往右   
    if(L <= m) Update(L,C,l,m,rt<<1);  
    else       Update(L,C,m+1,r,rt<<1|1);  
    PushUp(rt);//子节点更新了,所以本节点也需要更新信息   
}   

区间修改:

假设A[L,R]+=C
void Update(int L,int R,int C,int l,int r,int rt){//L,R表示操作区间,l,r表示当前节点区间,rt表示当前节点编号   
    if(L <= l && r <= R){//如果本区间完全在操作区间[L,R]以内   
        Sum[rt]+=C*(r-l+1);//更新数字和,向上保持正确  
        Add[rt]+=C;//增加Add标记,表示本区间的Sum正确,子区间的Sum仍需要根据Add的值来调整  
        return ;   
    }  
    int m=(l+r)>>1;  
    PushDown(rt,m-l+1,r-m);//下推标记  
    //这里判断左右子树跟[L,R]有无交集,有交集才递归   
    if(L <= m) Update(L,R,C,l,m,rt<<1 if="" r="">  m) Update(L,R,C,m+1,r,rt<<1|1);   
    PushUp(rt);//更新本节点信息   
}   
    
    
    
    
    
    

区间查询:

询问A[L,R]的和
首先是下推标记的函数:
void PushDown(int rt,int ln,int rn){  
    //ln,rn为左子树,右子树的数字数量。   
    if(Add[rt]){  
        //下推标记   
        Add[rt<<1]+=Add[rt];  
        Add[rt<<1|1]+=Add[rt];  
        //修改子节点的Sum使之与对应的Add相对应   
        Sum[rt<<1]+=Add[rt]*ln;  
        Sum[rt<<1|1]+=Add[rt]*rn;  
        //清除本节点标记   
        Add[rt]=0;  
    }  
}  
然后是区间查询的函数:
int Query(int L,int R,int l,int r,int rt){//L,R表示操作区间,l,r表示当前节点区间,rt表示当前节点编号  
    if(L <= l && r <= R){  
        //在区间内,直接返回   
        return Sum[rt];  
    }  
    int m=(l+r)>>1;  
    //下推标记,否则Sum可能不正确  
    PushDown(rt,m-l+1,r-m);   
      
    //累计答案  
    int ANS=0;  
    if(L <= m) ANS+=Query(L,R,l,m,rt<<1 if="" r="">  m) ANS+=Query(L,R,m+1,r,rt<<1|1);  
    return ANS;  
}   
    
    
    
    
    
    

函数调用
//建树   
Build(1,n,1);   
//点修改  
Update(L,C,1,n,1);  
//区间修改   
Update(L,R,C,1,n,1);  
//区间查询   
int ANS=Query(L,R,1,n,1);  

非递归实现线段树:
#define maxn 100007  
int A[maxn],n,N;//原数组,n为原数组元素个数 ,N为扩充元素个数   
int Sum[maxn<<2];//区间和   
int Add[maxn<<2];//懒惰标记   

建树
void Build(int n){  
    //计算N的值   
    N=1;while(N < n+2) N <<= 1;  
    //更新叶节点   
    for(int i=1;i<=n;++i) Sum[N+i]=A[i];//原数组下标+N=存储下标  
    //更新非叶节点   
    for(int i=N-1;i>0;--i){  
        //更新所有非叶节点的统计信息   
        Sum[i]=Sum[i<<1]+Sum[i<<1|1];  
        //清空所有非叶节点的Add标记   
        Add[i]=0;  
    }  
}   
点修改
void Update(int L,int C){  
    for(int s=N+L;s;s>>=1){  
        Sum[s]+=C;  
    }  
}   

点修改下的区间查询:

求A[L..R]的和(点修改没有使用Add所以不需要考虑)
代码非常简洁,也不难理解,
s和t分别代表之前的论述中的左右蓝色节点,其余的代码根据之前的论述应该很容易看懂了。
s^t^1 在s和t的父亲相同时值为0,终止循环。
两个if是判断s和t分别是左子节点还是右子节点,根据需要来计算Sum
int Query(int L,int R){  
    int ANS=0;  
    for(int s=N+L-1,t=N+R+1;s^t^1;s>>=1,t>>=1){  
        if(~s&1) ANS+=Sum[s^1];  
        if( t&1) ANS+=Sum[t^1];  
    }  
    return ANS;  
}   

区间修改:

A[L..R]+=C
//  
void Update(int L,int R,int C){  
    int s,t,Ln=0,Rn=0,x=1;  
    //Ln:  s一路走来已经包含了几个数  
    //Rn:  t一路走来已经包含了几个数  
    //x:   本层每个节点包含几个数  
    for(s=N+L-1,t=N+R+1;s^t^1;s>>=1,t>>=1,x<<=1){  
        //更新Sum  
        Sum[s]+=C*Ln;  
        Sum[t]+=C*Rn;  
        //处理Add  
        if(~s&1) Add[s^1]+=C,Sum[s^1]+=C*x,Ln+=x;  
        if( t&1) Add[t^1]+=C,Sum[t^1]+=C*x,Rn+=x;  
    }  
    //更新上层Sum  
    for(;s;s>>=1,t>>=1){  
        Sum[s]+=C*Ln;  
        Sum[t]+=C*Rn;  
    }   
}   

区间修改下的区间查询:

求A[L..R]的和
int Query(int L,int R){  
    int s,t,Ln=0,Rn=0,x=1;  
    int ANS=0;  
    for(s=N+L-1,t=N+R+1;s^t^1;s>>=1,t>>=1,x<<=1){  
        //根据标记更新   
        if(Add[s]) ANS+=Add[s]*Ln;  
        if(Add[t]) ANS+=Add[t]*Rn;  
        //常规求和   
        if(~s&1) ANS+=Sum[s^1],Ln+=x;  
        if( t&1) ANS+=Sum[t^1],Rn+=x;   
    }  
    //处理上层标记  
    for(;s;s>>=1,t>>=1){  
        ANS+=Add[s]*Ln;  
        ANS+=Add[t]*Rn;  
    }  
    return ANS;  
}  


结合强哥讲课的内容,发现线段树很好理解,就是代码稍微复杂点而已,感觉很ok没有想象中的困难





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值