视觉SLAM ch10位姿图

章节9探讨了基于BA的图优化方法,适用于精确优化相机位姿和地图点,但不适用于大规模实时场景。章节10引入了位姿图,它仅优化相机位姿,忽略了已收敛的路标点,通过固定路标点并优化轨迹来提高效率。位姿图的节点代表相机位姿,边表示相对运动估计,信息矩阵用于表示不确定性,其优化过程中假设传感器间独立,简化了计算复杂度。
摘要由CSDN通过智能技术生成

ch9介绍了以BA为主的图优化,可以精确地优化每个相机位姿地图点位置,但在更大场景无法实时化,ch10介绍一种简化的BA:位姿图 (pose graph)

位姿图的意义

每次后端优化中,大部分的都是原有的旧路标点,只有少量新路标点,如此优化几次之后,大部分的路标点的坐标已经收敛,没有必要对它们的坐标再进行优化。更好的做法是优化几次之后把它们的位置固定住,将它们作为位姿估计约束而不再作为路标点坐标的约束。

完全不管路标(直接使用初始估计坐标),只优化轨迹(相机位姿),这种图优化就是位姿图。

位姿图的优化

节点:相机位姿。

边:两个位姿节点之间的相对运动估计。

误差:

雅克比矩阵推导:(误差关于位姿T_i 和T_j的导数)

具体推导过程参考: link1   

信息矩阵  代表不确定性

信息矩阵是协方差矩阵的一个逆矩阵
信息矩阵在计算条件概率分布明显比协方差矩阵要方便,显然,协方差矩阵要求逆矩阵,所以时间复杂度是O(n^3)。
 

信息矩阵转置后不变,因为这是通常假定我们的传感器之间是独立的。所以中间两项可以合在一起。
 

参考:链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值